border
 border

Final Answers
by Gérard P. Michon, Ph.D.

(unless otherwise stated) g.michon@att.net

© 2000 - 2023  by Gérard Michon.  All Rights Reserved.  All texts and illustrations are copyrighted; short excerpts may only be quoted according to applicable copyright laws.

forpixel
 Net Planar Area, 
 as Integral of x dy  Net Planar Area, 
 as Integral of (-y dx)
 Numericana 
1984 California License Plate (stretched)
  home   |    NumericanaTM   |   Some backlinks 
 
Roman Numerals
Casio Calculators
Ellipse Perimeter
Magic Tricks
Playing Cards
Mathematical Recreations
Transmit with infrared
TI-36X Pro calculator
Symbols and Icons
Units & Measures
Home (numericana.com)
Combinatorics
HP Prime Calculator
Solvay Conferences
Numerical Constants
Electromagnetism
Counterfeit Penny
Area of an Ellipsoid
Physics of Billiards
Two-Player Games
Index (this page)
Taupe Laplace
EL-W516 Calculator
Integers
Physics
Practical Formulas
Euclidean Geometry
Chemistry
Gases and Fluids
Polyhedra
Humor
HP-50g Calculator
HP-35s  Calculator
TI-92, TI-89 & Voyage
Modular Arithmetic
Dice
Giants of Science
History & Culture
Cinematography, Video
Graph Theory
Functions (trig. etc.)
Money
Nikon Photography
Pseudoprimes
Angles, Solid Angles
Ring Theory
p-adic Numbers
Canon F-792SGA
Continued Fractions
Armorial (supplement)
Motion of Rigid Bodies
Prime Factorizations
BASIC Stamp®
Poker 101
Filter Design
Model trains
Wilson's Theorem
Escutcheons of Science
Relativity
Counting the Stars
3D Surfaces
Physics of Slingshots
Mathematical Miracles
Web Authors
Divergent Series
Fields & Skew Fields
Quantum Theory
Polyhedra table
Convex Geometry
Geometrical Optics
Analysis
Calculus
Asymptotics
Electrochemistry
OEIS Portal
Arms of Tycho Brahe
Matrices & Determinants
 
Most Popular Pages
[ Full index  |  Chronology ]
Mamiya 645 Format
Gears
Positional Numeration
Thermodynamics
Calendars
Scales & Ratings
Algebra
Vector Calculus
Utility & Decisions
General Relativity
Geographical Trivia
Trivia
Planar Curves
Stochastic Processes
Popular Fallacies
Martin Gardner
Topology
Group Theory
Lanczos Formula
Poker 102
Richard Feynman
Curvature & Torsion
Partitions
Sets & Logic
Dipoles
Colors & Dispersion
Steam Engines
Power Series
Ancient Knowledge
Motors & Generators
Prime Numbers
Nuclear Physics
Vector Spaces
Quadratic Reciprocity
Rounding Numbers
Illusions & Deceit
Taupe (traditions)
The Unexplained
Photography
Style & Usage
Demons of Physics
Hypergeometric Series
Isohedral Symmetry
Chemical Elements
Dissipative Mechanics
Analytical Mechanics
Organic Chemistry
Electronics 101
Fourier Transform
Practical Chemistry
Wendt's Determinant
Schrödinger's Equation
Optimization
Algorithms
Photographic Film
Differential Equations
Waves
Completeness
Special Polynomials
Magnetism
Projective Geometry
Solar System
Miscellany
Casino Card Games
Brownie Camera
Transport Properties
Category Theory
Mathematical Proofs
Quantum Field Theory
The Scientific Method
Philosophy
Randomness
Open Questions
String Theory
Chess
Virial Theorem
Elasticity
Medicine
Cosmology
Photonics
Haroche Experiment
Fantasy Engineering
The Arrow of Time
Statistical Physics
Laser Beams
Functional Analysis
Tesla's World
Ramsey Theory
Social Choice Theory
Modularity theorem
Acids  &  Bases
Fractal Geometry
Bayesian Statistics
Finite Fourier Transforms
Blackjack
The Vacuum
Scale Invariance
Newtonian Gravity
Light & Vision
Stars
Galaxies
Computable numbers
Gravitational Waves
Computer Science
Fair Division
Audio recording
Sound & Acoustics
Mathematics of Music
Chaos Theory
Microphones
Tensors
Harmonic Analysis
Weak Interactions
Water
Strong Nuclear Force
Supersymmetry
Gauge Theory
Irrational Numbers
Royal Game of Ur
Trick Questions
Woodworking
Crypto-Currencies
Antimatter
The game of Go
Metalworking
Quantum Gravity
Particle Detection
Particle Accelerators
Horology
Magnets
Capacitors
Radiation
Gamma Function
Limits
Trigonometry
Cryptography
Nimbers
Topos
Connes' Geometry
Modules
Triangles
Heptatonic scales
Infinite products
Theta functions
Evolution of Life
 
 About Us
 
border
border

Table of Contents
See also:   1.  The chronological list.
2.  All scripts of the companion videos.

Approach your problems from the right end and begin with the answers.
Then one day, perhaps, you will find the final question.

"The Chinese Maze Murders"   by   Robert Hans van Gulik  (1910-1967) 
 
It's better to know some of the questions than all of the answers.
James Grover Thurber  (1894-1961) 
 
Whoever answers before pondering the question is foolish and confused.
Proverbs 18:13

Mathematical Proofs

  1. Proof by inspection  for  finitely applicable  statements.
  2. Only a  negative  deserves a proof.
  3. Proving by induction  the truth of infinitely many things.
  4. Stochastic proofs  leave only a  vanishing  uncertainty.
  5. Heuristic arguments  state the likelihood of a conjecture.
  6. Computer-aided proofs4-color theorem  (1976).
  7. Lack of a good approach  doesn't invalidate a statement.
  8. The most interesting theorems  are general tools for proving other theorems.
  9. Treacherous patterns.  What holds for a long time may not hold  forever.
  10. Fermat's last theorem:  One example of a  botched proof.

    Measurements and Units

  11. All metric prefixes:  Current SI prefixes, obsolete prefixes, bogus prefixes...
  12. Prefixes for units of information  (multiples of the bit).  Brontobyte hoax.
  13. Density one.  Relative and absolute density precisely defined.
  14. Acids yielding a mole of H+ per liter are normal (1N) solutions.
  15. Calories:  Thermochemical calorie, gram-calorie, IST calorie (and Btu).
  16. Horsepowers:  hp, metric horsepower and boiler horsepower.
  17. The standard acceleration of gravity  has been 9.80665 m/s2 since 1901.
  18. Reciprocal time.  Frequency  (beat)  and rate of phase change  vs.  activity.  
    Time:
  19. Tiny durations;  zeptosecond (zs, 10-21s) & yoctosecond (ys, 10-24s).
  20. A jiffy is either a light-cm or 10 ms (tempons and chronons are shorter).
  21. A shake  (10 ns)  is much shorter than  two shakes of a lamb's tail.
  22. The length of a second.  Solar time, ephemeris time, atomic time.
  23. The length of a day.  Solar day, atomic day, sidereal or Galilean day.
  24. Scientific year = 31557600 SI seconds  (» Julian year of  365.25 solar days).  
    Length:
  25. The International inch (1959) is 999998/1000000 of a US Survey inch.
  26. The typographer's point  is  exactly  0.013837" = 0.3514598 mm.
  27. How far is a league?  Land league, nautical league.
  28. Radius of the Earth and circumference at the Equator.
  29. Extreme units of length.  The very large and the very small.  
    Surface Area:
  30. Acres, furlongs, chains and square inches...  
    Volume, Capacity:
  31. Capitalization of units.  You only have a choice for the liter (or litre ).
  32. Drops or minims:  Winchester, Imperial or metric.  Teaspoons and ounces.
  33. Fluid ounces:  US ounces (fl oz) are about 4% larger than British ounces.
  34. Gallons galore:  Winchester (US) vs. Imperial gallon (UK), dry gallon, etc.
  35. US bushel and Winchester units of capacity  (dry = bushel, fluid = gallon).
  36. Kegs and barrels: A keg of beer is half a barrel, but not just any "barrel".  
    Mass, "Weight":
  37. Tiny units of mass.  A hydrogen atom is about 1.66 yg.
  38. Solar mass:  The unit of mass in the  astronomical system of units.
  39. Technical units of mass.  The  slug  and the  hyl.
  40. Customary units of mass  which survive in the electronic age.
  41. British weightsAvoirdupois pound & ounce  (lb & oz).  Troy ounce  (ozt).
  42. The  poids de marc  system:  18827.15 French grains  to the kilogram.
  43. A talent was the mass of a cubic foot of water.
  44. Tons:  Short ton, long ton (displacement ton), metric ton (tonne), assay ton...
    • Other tons:  Energy (kiloton, toe, tce), cooling power, thrust, speed.

    The Art of Rounding Numbers:

  45. Scientific notation:  Nonzero numbers given as multiples of  powers of ten.
  46. So many "significant" digits  imply a result of limited precision.
  47. Meaning of inequalities  when rounded bounds are involved.
  48. Standard deviation  specifies the  uncertainty  in the  precision  of a result.
  49. Engineering notation  reduces a number to a multiple of a power of 1000.
  50. The quadratic formula  is numerically inadequate in common cases.
  51. Devising robust formulas  which feature a stable floating-point precision.
  52. Underflow:  0.0  stands for a small number not  known  to be exactly zero.

    Scales and Ratings:  Measuring without Units

  53. The Beaufort scale  is now defined strictly in terms of wind speed.
  54. The  Saffir-Simpson Hurricane Scale  (SSHS)  became a wind scale in 2010.
  55. The Fujita scale  for tornadoes.
  56. Decibels:  A general-purpose logarithmic scale for relative power ratios.
  57. Sound intensity level (SIL)  is well-defined;  SPL is an  approximation.
  58. Pitch.  An octave is  1200  cents.
  59. Apparent and absolute magnitudes  of stars.
  60. Acidity.  The pH scale was invented by  Søren Sørensen  in 1909.
  61. The organoleptic  Scoville scale  is used to rate the pungency of hot spices.
  62. Oven temperatures.  Cooks may use  gas marks  or traditional descriptions.
  63. The Richter scale  for earthquakes and other sudden energy releases.
  64. Volcanic Explosivity Index (VEI)  Chris Newhall  and  Stephen Self  (1982).
  65. Pencil hardness.  Clay makes harder graphite leads  (lighter swatching).

    Scaling and Scale Invariance

  66. The scale of animals  according to Galileo Galilei.
  67. Jumping fleas...  compared to jumping athletes...
  68. Kleiber's law:  Metabolic rates of animals as a function of their sizes.
  69. Drag coefficient  of a sphere as a function of the Reynolds number  R.
  70. Benford's Law.  Leading digits of quantities expressed in random units.

    Model Trains:  Scales, gauges & other mathematical aspects.

  71. Lexicon of railroad jargon:  North-American, British and French usage.
  72. A short history of the scales of model trains...
  73. Gauges of worldwide lines.  60% are standard gauge  (56.5'' = 1.4351 m).
  74. Gauges of model tracks.  HO and OO models can share the same tracks.
  75. Types of model trains.  Naming usual combinations of a scale and a gauge.
  76. Large model trains  are often used outdoors.  Some are ridable.
  77. Gauges are  almost  in geometric progression:  Z,N,TT, HO, S,O,1,3...
  78. The height of a miniature rail, in thousands of an inch, is called its  code.
  79. Composition of modern miniature railsNickel-silver  contains no silver.
  80. Travelage  is the number of crossties per unit of distance.
  81. Luminous power of sources at scale 1/s  should be  1/s that of prototypes.
  82. Scenery scale.  81 is the geometric mean between 87 (HO) and 76 (OO).
  83. Mirrors and shadows.  Overlooked aspects of scenery in confined spaces.
  84. Couplers.
  85. Loading gauge.
  86. Radius of curved track available from different manufacturers.
  87. Least separation between curved parallel tracks, for  specific  rolling stock.
  88. Turnouts.  The  frog number  is the cotangent of the  frog angle.
  89. Sectional tracks.  The need for compensator and/or correctors.
  90. DC control.  Traditional control of model trains, by  Direct current.
  91. DCCDigital command control  of several locomotives on the same track.
  92. Sound.  Some DCC locomotives feature on-board sound effects.
  93. Blocks.  A layout can be divided into blocks powered separately.
  94. Detection & transponding.  Locomotives located by the power they use.
  95. OpenLCB (NMRAnet).  Local control bus  =  Control area network (CAN).
  96. Famous trains and locomotives  and their miniature counterparts.
  97. Dream lines.  Legendary railroad services, past and present.
  98. A quick survey of a few grand layouts.  Great modeling achievements.

    Numerical Constants: Mathematical & Physical Constants

    Physical Constants:
  99. For the utmost in precision, physical constants are derived in a certain order.
  100. Primary conversion factors  between customary systems of units.
    6+1 Basic Dimensionful Physical Constants  (Proleptic SI)
  101. Speed of Light in a Vacuum  (Einstein's Constant):   c = 299792458 m/s.
  102. Magnetic Permeability of the Vacuum:  An exact value defining the ampere.
  103. Planck's constant:  The ratio of a photon's energy to its frequency.
  104. Boltzmann's constant:  Relating temperature to energy.
  105. Avogadro's number:  The number of things per mole of stuff.
  106. Mechanical equivalent of light  (683 lm/W @ 540 THz)  defines the lumen.
  107. Newton's constant of gravitation  and a futuristic definition of the second.
    Dimensionless Physical Constants: 
  108. Galileo's constant.  What Galileo  measured  is now known to be  8 / p2
  109. Sommerfeld's  fine-structure constant   a  =  1 / 137.036   (or so).
  110. The large number  W.  A  dimensionless  number pondered by  Dirac.
    Fundamental Mathematical Constants: 
  111. 0:  Zero is the most fundamental and most misunderstood of all numbers.
  112. 1 and -1:  The unit numbers.
  113. p ("Pi"):  The ratio of the circumference of a circle to its diameter.
  114. Ö2:  The diagonal of a square of unit side.  Pythagoras' Constant.
  115. Ö3:  Diameter of a cube of unit side.  Constant of Theodorus.
  116. f:  The diagonal of a regular pentagon of unit side.  The Golden Number.
  117. Euler's  e:  Base of the exponential function which equals its own derivative.
  118. 63.2%  (1-1/e)  of a sudden level shift is achieved after one  time constant.
  119. ln(2):  The alternating sum of the reciprocals of the integers.
  120. An engineering favorite:  The decimal logarithm of 2.
  121. Euler-Mascheroni Constant  g :  Limit of   [1 + 1/2 + 1/3 +...+ 1/n] - ln(n).
  122. Catalan's Constant  G :  The alternating sum of the reciprocal odd squares.
  123. Apéry's Constant  z(3) :  The sum of the reciprocals of the perfect cubes.
  124. Imaginary  i:  If "+1" is a step forward, "+ i" is a step sideways to the left.
    Exotic Mathematical Constants: 
  125. Delian constant:  21/3  is the solution to the  duplication of the cube.
  126. Gauss's constant:  Reciprocal of the arithmetic-geometric mean of 1 and Ö2.
  127. Rayleigh factor  for the diffraction limit of angular resolution.
  128. Mertens constant:  The limit of   [1/2 + 1/3 + 1/5 +...+ 1/p] - ln(ln p)
  129. Artins's constant  is the proportion of  long primes  in decimal or binary.
  130. Ramanujan-Soldner constant  (m):  Positive root of the  logarithmic integral.
  131. Landau-Ramanujan constant.  Asymptotic density of sums of two squares.
  132. The Omega constant:  W(1) is the solution of the equation   x exp(x) = 1.
  133. Feigenbaum constant (d) and the related reduction parameter (a).
  134. Fransén-Robinson constant:  Inverse-Gamma integral.
  135. Landau's constant.
  136. Bloch's constant.
    Some Third-Tier Mathematical Constants: 
  137. Gelfond's Constant  raised to the power of  i  is  -1.
  138. Brun's Constant:  A standard uncertainty  (s)  means a 99% level of  ±3s
  139. Prévost's Constant:  The sum of the reciprocals of the Fibonacci numbers.
  140. Grossman's Constant:  One recurrence converges for only one initial point.
  141. Ramanujan's Number:   exp(p Ö163)   is almost an integer.
  142. Viswanath's Constant:  Mean growth in random additions and subtractions.
  143. Copeland-Erdös Number:  Almost all numbers are  normal,  like this one.

    Counting, Combinatorics, Probability

  144. Always change your first guess  if you're always told another choice is bad.
  145. The Three Prisoner Problem  predated Monty Hall and Marilyn by decades.
  146. Seating N children at a round table  in (N-1)! different ways.
  147. How many Bachet squares?  A 1624 puzzle using the  16  court cards.
  148. Choice Numbers:  C(n,p) is the number of ways to choose p items among n.
  149. Multichoice Numbers:  Putting  n  objects into distinct boxes of fixed sizes.
  150. C(n+p-1,p) distinct ways  to put  p  identical balls into  n  numbered bins.
  151. C(n+2,3) three-scoop sundaes.  Several ways to count them (n flavors).
  152. C(n+p-1,p) choices of p items among n different types, allowing duplicates.
  153. How many new intersections  of straight lines defined by n random points.
  154. Catalan numbers  are the results of many different enumerations.
  155. Face cards.  The probability of getting a pair of face cards is less than 5%.
  156. Homework Central:  Aces in 4 piles, bad ICs, airline overbooking.
  157. Binomial distribution.  Defective units in a sample of 200.
  158. Siblings with the same birthday.  What are the odds in a family of 5?
  159. Covariance:  A generic example helps illustrate the concept.
  160. Variance of a binomial distribution,  derived from general principles.
  161. Standard deviation.  Two standard formulas to estimate it.
  162. Markov's inequality  is used to prove the  Bienaymé-Chebyshev inequality.
  163. Bienaymé-Chebyshev inequality:  Valid for  any  probability distribution.
  164. Inclusion-Exclusion:  One way to find the probability of a union of 3 events.
  165. The "odds in favor" of poker hands:  A popular way to express probabilities.
  166. Probabilities of a straight flush in 7-card stud  (generalized to "q-card stud").
  167. Probabilities of a straight flush  among 26 cards  (or any other number).
  168. The exact probabilities  in 5-card, 6-card, 7-card, 8-card and 9-card stud.
  169. Rearrangements of  CONSTANTINOPLE  so no two vowels are adjacent...
  170. Four-letter words from  POSSESSES:  Counting with generating functions.
  171. How many positive integers below 1000000  have their digits add up to 19?
  172. Polynacci Numbers:  Flipping a coin n times without  p  tails in a row.
  173. Winning in finitely many flips or losing endlessly...
  174. 252 decreasing sequences  of 5 digits  (2002 nonincreasing ones).
  175. How many ways are there to make change for a dollar?  Closed formulas.
  176. Partitioniong an amount  into the parts minted in a certain currency.
  177. The number of rectangles  in an N by N chessboard-type grid.
  178. The number of squares  in an N by N grid:  0, 1, 5, 14, 30, 55, 91, 140...
  179. Screaming Circles:  How many tries until there's no eye contact?
  180. Average distance  between two random points on a segment, a disk, a cube...
  181. Average distance  between two points on the surface of a sphere.

    Randomness  & Randomizing

  182. Normal sequences  feature any string with equal probability.
  183. Fair coin  generated from the output of a Geiger counter.
  184. Random integer below  n  generated from a fair coin.
  185. Burning  cards  may defeat cheating but doesn't affect random outcomes.
  186. Shuffling cards  to give every permutation the same probability.
  187. Legally cheating at online poker  by taking advantage of poor programming.
  188. Probability distributions:  Measurability.

    Bayesian Statistics

  189. Bayes' Theorem.  A formula which applies to classical probabilities.
  190. The Bayesian universe:  Probabilities quantify beliefs.
  191. Aggregation paradox:  Confusion factors and meaningless correlations.
  192. Raw product ratings.  How do they compare to each other?
  193. Quantum theory is not Bayesian.
  194. The human brain is not a Bayesian engine  but there's still hope...

    Diamonds Hearts Spades Clubs Playing Cards

  195. Short history of playing cards:  From China to Europe, to the New World.
  196. Sizes of playing cards:  French, Bridge, Poker, French tarot, Patience, etc.
  197. How playing cards are made:  Either 2 layers of paper or  100% plastic.
  198. Suits:  Spades, hearts, diamonds & clubs  (swords, cups, coins & wands).
  199. The four court cards:  Ace, king, queen, jack  (king, queen, cavalier, page).
  200. The  Mameluke  52-card standard deck  with 3 figure cards per suit.
  201. 78-card tarot deck:  21 trumps, 1 fool, 4 suits of 14  (incl. 4 court cards).
  202. The Major Arcana:  Trumps and fool of the tarot deck, in occult parlance.
  203. Names of the court cards  in the French tradition.  Hundred Years' War.
  204. 48-card  Aluette  deck:  Latin suits, mimicks and names of special cards.
  205. Jokers  from Euchre  (1857)  found their way into Poker in the 1870's.
  206. The 40-card Spanish  baraja  deck  lacks  8, 9 & 10.
  207. The 32-card  piquet  deck  lacks 2-6.  French  Belote  and German  Skat.
  208. Skat:  The most popular German card game  (32-card deck).
  209. 24-card deck  for Euchre (single deck) and Pinochle (double deck).
  210. Happy Families:  44-card British deck of 11 families of 4  (1851).
  211. Jeu des 7 familles:  42-card French deck of 7 families of 6  (1876).
  212. 1000 Bornes:  106 cards for a boardless car-racing game  (1954).
  213. Set® cards:  Combinatorics of a modern 81-card ternary deck  (1974).
  214. New-deck order  for the whole 81-card SET deck  (or the 27 solids only).
  215. Zener cards  were invented in the early 1930s for  (deprecated)  ESP tests.

    The Card Games Played in Casinos  (Banked Games)

  216. Gaming chips:  Color coding, shapes & sizes, designs.  Jetons & plaques.
  217. Casino edge:  Gambling beyond the cost of entertainement is  foolish.
  218. Faro  was the most popular banking game from 1825 to 1915.
  219. Baccarat  (Punto-Banco).
  220. EZ Baccarat(™).  The original  Dragon-7  and newer  Panda-8  side bets.
  221. Carribean Stud.
  222. Three-Card Poker.

    The Game of Blackjack  (Twenty-One)

  223. Glossary:  A few specialized term used in blackjack.
  224. Casino rules  for Blackjack.
  225. Basic strategy  against an  infinite shoe.
  226. Pair of aces  (soft 12).  What to do if you're not allowed to split it?
  227. Blackjack enumerations  using polynomials.
  228. History of Blackjack counting.

    Poker  101 :  Rules, Odds & Glossary

  229. 5-card draw:  The simplest form of poker is the basis for  video poker.
  230. The 2598960 poker hands  come in 9 or 10 types, rarest ones first.
  231. Kickers  may help break ties between hands bearing the same name.
  232. Perfect Poker:  "Deuces or better" have 1 to 1 odds with the  full-wheel rule.
  233. Poker chips:  Color, size and weight.
  234. Poker chip sets:  Practical repartitions into various denominations.
  235. Structure sheet  of the most exclusive invitation-only tournament.
  236. Handling chips:  Counting them, stacking them, betting with them.
  237. Poker chip tricks.
  238. 7-card stud  was the most popular variant of poker before NLHE and PLO.
  239. 7-card combos:  Odds of best 5-card hands extracted from 7 random cards.
  240. Betting rules:  Antes & blinds, checking, opening, calling and raising.
  241. Glossary:  The jargon of poker.

    Poker  102 :  No-Limit Hold 'em  &  Pot-Limit Omaha

  242. Texas hold 'em:  Two hole cards (hand) and five community cards (board).
  243. Preflop probabilities  (win or tie a showdown)  for all 169 starting hands.
  244. If you have kings in an m-handed game,  how often do you run into aces?
  245. Trips or quads  from a lone board pair.
  246. With 3 clubs on the board:  If a player has a flush, does someone else?
  247. Nontransitivity of matches:  Pairwise showdowns can be  inconsistent.
  248. How much to bet  depends on the goal  (make money or avoid elimination).
  249. Omaha Hold 'em:  Use 2 hole cards (out of 4) and 3 board cards (out of 5).

    Stochastic Processes  &  Stochastic Models

  250. Poisson Processes:  Random arrivals happening at a constant rate (in Bq).
  251. Simulating a poisson process  with a  uniform  random number generator.
  252. Markov Processes:  When only the present influences the future...
  253. The Erlang B Formula  assumes callers don't try again after a busy signal.
  254. Markov-Modulated Poisson Processes  may look like Poisson processes.

    "Utility" and Decision Analysis

  255. The Utility Function:  A dollar earned is usually worth less than a dollar lost.
  256. St. Petersburg's Paradox:  What would you pay to play the Petersburg game?
  257. Two-envelope problem.  Don't misuse  random variables !

    Fair Division

  258. Sperner's lemma.  A discrete version of Brouwer's fixed-point theorem.
  259. Sharing a necklace  with  N  types of beads,  in just  N  cuts.

    Social Choice Theory

  260. One man, one vote!  That's conclusive only when there are just two options.
  261. The case for a rigorous approach,  when the  majority rule  doesn't suffice.
  262. Condorcet's Paradox:  A group of rational voters need not behave rationally.
  263. Tallying systems based on additive preference points  are misguided at best.
  264. Plurality voting  is just another point-system, possibly the worst of them.
  265. Runoff systemsAd hoc  improvements on  plurality voting.
  266. The Borda method,  the foremost point system,  is finally being phased out.
  267. Cardinal voting  could usefully supplement ordinary  ordinal voting.
  268. Conform Condorcet methods  always produce the right choice, if it's  clear.
  269. Llull's method  turns any preliminary order into a  conform  voting system.
  270. Tallies:  Summaries of voting data that allow the outcome to be computed.
  271. Manipulations:  Taking advantage of the weaknesses of a voting system.
  272. A composite system  aggregating preference lists and discretionary points.
  273. Stability of a slate  and  stabilization  of slate primaries..
  274. Incumbents  play a key rôle in any political election.
  275. Aggregating lists of preferences from voters,  when that's all we have...
  276. Voter transition matrix  from a primary to a general election.
  277. Copeland scores  provide an appealing  conform  Condorcet tally.
  278. The second-order Copeland tallying method  has some theoretical virtues.
  279. The Schulze method  uses a  transitive  relation based on voter wishes.
  280. Apportioning whole numbers  in lieu of  fractional values,  for a given total.
  281. The Big Picture:  What an elected government should and should not do.

    Elementary Euclidean Geometry

  282. Center of an arc  determined with straightedge and compass.
  283. Surface areas:  Circle, trapezoid, triangle, sphere, frustum, cylinder, cone...
  284. Simson line  of a circumcircle point contains its projections along the sides.
  285. Isogonal conjugates  Concurrent bissector reflections of concurrent lines.
  286. Euler's line  goes through the orthocenter, the centroid and the circumcenter.
  287. Euler's circle  is tangent to the incircle and the excircles  (Feuerbach, 1822).
  288. Power of a point  with respect to a circle  (Jakob Steiner, 1826).
  289. Ptolemy's theorem  relates the diagonals and the sides of a cyclic tetragon.
  290. Barycentric coordinates & trilinears  exemplify  homogeneous coordinates.
  291. Elliptic arc:  Length of the arc of an ellipse between two points.
  292. Perimeter of an ellipse.  Exact formulas and simple ones.
  293. Surface of an ellipse.
  294. Volume of an ellipsoid  (either a spheroid or a scalene ellipsoid).
  295. Surface area of a spheroid  (oblate or prolate ellipsoid of revolution).
  296. Quadratic equations in the plane describe ellipses, parabolas, or hyperbolas.
  297. Centroid of a circular segment.  Find it with Guldin's (Pappus) theorem.
  298. Parabolic arc of given extremities  with a prescribed apex between them.
  299. Focal point of a parabola.  y = x 2 / 4f (where f is the focal distance).
  300. Parabolic telescope:  The path from infinity to focus is constant.
  301. Make a cube go through a hole in a smaller cube.  Prince Rupert's paradox.
  302. Octagon: The relation between side and diameter.
  303. Constructible regular polygons  and constructible angles (Gauss).
  304. Areas of regular polygons of unit side:  General formula & special cases.
  305. For a regular polygon of given perimeter,  the more sides the larger the area.
  306. Curves of constant width:  Reuleaux Triangle and generalizations.
  307. Irregular curves of constant width.  With or without any circular arcs.
  308. Solids of constant width.  The three-dimensional case.
  309. Constant width in higher dimensions.
  310. Fourth dimension.  Difficult to visualize, but easy to consider.
  311. Volume of a hypersphere  and hyper-surface area, in any dimensionality.
  312. Hexahedra.  The cube is not the only polyhedron with 6 faces.
  313. Descartes-Euler Formula:  F-E+V=2  but restrictions apply.
  314. Symmetries of the plane.  Another approach to Euclidean axioms.

    Triangles

  315. Napoleon's theorem:  Three equilateral triangles around a scalene triangle...
  316. Morley's theorem:  The 3 intersections of adjacent trisectors are equidistant.
  317. 6-point Conway circle.  Every vertex prolongated by the opposite distance.

    Projective Geometry

  318. Polarity:  A geometric duality due to  Apollonius of Perga  (c. 200 BC).
  319. The invention of perspective  by  Renaissance  artists.
  320. Projective spaces:  Projective line, projective plane, etc.
  321. Homogeneous coordinatesFeuerbach, Möbius, Plücker  (1827 & 1828).
  322. Projective duality:  Points are incident to lines.  Lines are incident to points.
  323. Pappus' theorem.
  324. Pascal's theorem  was proven by  Blaise Pascal  when he was 16.
  325. Brianchon's theorem:  The dual of Pascal's theorem.
  326. Desargues' theorem   (c. 1639).
  327. The two cyclic points  (I and J)  of  Jean-Victor Poncelet  (1820).
  328. Fano plane  PG(2,2).  Projective geometry  in dimension  2  and order  2.

    Topology

  329. Metric spaces:  The motivation behind more general  topological  spaces.
  330. Abstract topological spaces  are defined by calling some subsets  open.
  331. Limits  in abstract topological spaces.
  332. Nets (generalized sequences).  Moore-Smith sequences  (1922).
  333. Basis of a topology:  A set is open  iff  it's a union of sets from the base.
  334. Closed sets  are sets (of a topological space) whose complements are open.
  335. Subspace F of E:  Its open sets are the intersections with F of open sets of E.
  336. Separation axioms:  Flavors of topological spaces, according to  Trennung.
  337. Compactness of a topological space:  Any open cover has a  finite subcover.
  338. Paracompact space:  Any open cover has a locally-finite open refinement.
  339. Locally compact sets  contain a  compact neighborhood  of every point.
  340. Extreme-value theorem:  The continuous image of a compact is compact.
  341. Borel setsTribes  form the topological foundation for  measure theory.
  342. General properties of sequences  characterize topological properties.
  343. Continuous functions  let the  inverse image  of any open set be open.
  344. Homeomorphic spaces.  An  homeomorphism  is a  bicontinuous function.
  345. Hilbert curve.  A continuous function from  ]0,1[  to the square  ]0,1[×]0,1[.
  346. Restrictions remain continuous.  Continuous extensions may be impossible.
  347. The product topology  makes projections continuous on a cartesian product.
  348. Connected sets  can't be split by open sets.  The empty set  is  connected.
  349. Intermediate-value theorem.
  350. Path-connected sets  are a special case of  connected sets.
  351. Arc-connected spaces are path-connected.  The converse need not be true.
  352. Homotopy:  A progressive transformation of a  function  into another.
  353. The fundamental group:  The homotopy classes of all loops through a point.
  354. Homology and Cohomology.  Poincaré duality.
  355. Descartes-Euler Formula:  F-E+V = 2, but restrictions apply.
  356. Euler Characteristic:   c   (chi)  extended beyond its traditional definition...
  357. Winding number  of a continuous planar curve about an outside point.
  358. Fixed-point theorems  by  BrouwerShauder  and  Tychonoff.
  359. Turning number  of a planar curve with a well-defined oriented tangent.
  360. Real projective plane  and Boy's surface.
  361. Classification Theorem  for connected  closed surfaces.
  362. Hadwiger's  additive continuous functions of d-dimensional rigid bodies.
  363. Eversion of the sphere.  An homotopy  can  turn a sphere inside out.
  364. Classification of surfaces:  "Zero Irrelevancy Proof" (ZIP) by J.H. Conway.
  365. Braid groups:  Strands, braids and pure braids.
  366. Zariski topology (algebraic geometry).  Only algebraic subsets are  closed.
  367. Fiber bundles and fibrations.  Locally homeomorphic to a direct product.

    Completeness:

  368. Complete metric space:  A space in which all Cauchy sequences converge.
  369. Continuity and uniform continuity
  370. Uniformity  is sufficient to define completeness  (or lack thereof).
  371. Flawed alternatives to completeness.
  372. Banach spaces  are complete normed vector spaces.
  373. Fréchet spaces  are generalized Banach spaces.

    Fractal Geometry:

  374. Fractional exponents  were first conceived by Nicole d'Oresme (c. 1360).
  375. The von Koch curve (and  snowflake):  Dimension of self-similar objects.
  376. The Julia set and the Fatou set of an analytic function  are complementary.
  377. The Mandelbrot set was so named by  Adrien Douady  &  John H. Hubbard.
  378. Hausdorff dimension is revealed by a covering with balls of radius  < e.

    Angles and Solid Angles:

  379. Planar angles  (from one direction to another)  are  signed  quantities.
  380. Bearing:  Unless otherwise specified, this is the angle  west of north.
  381. Solid angles  are to spherical patches what planar angles are to circular arcs.
  382. Circular measures:  Angles and solid angles aren't quite dimensionless...
  383. Solid angle formed by a trihedron :   Van Oosterom & Strackee  (1983).
  384. Solid angle subtended by a rhombus.  Apex of a right  rhombic pyramid.
  385. Formulas for solid angles  subtended by patches with simple shapes.
  386. Right ascension and declination.  Precession of celestial coordinates  (a,d).

    Curvature and Torsion:

  387. Curvature of a planar curve:  Variation of inclination with distance  dj/ds.
  388. Curvature and torsion  of a three-dimensional curve.
  389. Distinct curvatures and  geodesic  torsion  of a curve drawn on a surface.
  390. The two fundamental quadratic forms  at a point of a parametrized surface.
  391. Lines of curvature:  Their  normal  curvature is extremal at every point.
  392. Geodesic lines.  Least length is achieved with  zero geodesic curvature.
  393. Meusnier's theorem:  Tangent lines have the same  normal curvature.
  394. Mean curvature at a point:  Half-sum of the two principal curvatures.
  395. Gaussian curvature of a surface.  The  Gauss-Bonnet theorem.
  396. Parallel-transport of a vector around a loop.  Holonomic angle of a loop.
  397. Total curvature of a curve.  The Fary-Milnor theorem for knotted curves.
  398. Linearly independent components  of the  Riemann curvature tensor.

    Planar Curves:

  399. Cartesian equation of a straight line  passing through two given points.
  400. Confocal Conics:  Ellipses and hyperbolae sharing the same pair of  foci.
  401. Spiral of Archimedes:  Paper on a roll, or groove on a vinyl record.
  402. Hyperbolic spiral:  The inverse of the  Archimedean spiral.
  403. Catenary:  The shape of a thin chain under its own weight.
  404. Tractrix:  Meridian of Beltrami's  pseudosphere.  Involute of the  catenary.
  405. Witch of Agnesi.  How the  versiera  (Agnesi's cubic)  got a weird name.
  406. Folium of Descartes.
  407. Lemniscate of Bernoulli:  A quartic curve shaped like the  infinity symbol.
  408. Cassini oval:  The product of the distances to the two  foci  is constant.
  409. Limaçons of Pascal:  The cardioid  (unit epicycloid) is a special case.
  410. Cartesian oval:  The  weighted  average distance to two poles is constant.
  411. The envelope of a family of curves  is everywhere tangent to one of them.
  412. The evolute of a curve  is the locus of its centers of curvature.
  413. Involute of a curve:  Trajectory of a point of a line  rolling  on that curve.
  414. Parallel curves  share their normals, along which their distance is constant.
  415. The nephroid  (or  two-cusped epicycloid )  is a  catacaustic  of a circle.
  416. Freeth's nephroid:  A special  strophoid  of a circle.
  417. Bézier curves  are algebraic splines.  The cubic type is the most popular.
  418. Piecewise circular curves:  The traditional way to specify curved forms.
  419. Intrinsic equation  [curvature as a function of arc length]  may have  spikes.
  420. The quadratrix  (trisectrix)  of Hippias squares the circle and trisects angles.
  421. The parabola  is  constructible  with straightedge and compass.
  422. Mohr-Mascheroni constructions  use the compass alone  (no straightedge).
  423. Osculating curves.  Beautiful extensions of the  Tait-Kneser theorem.

    Surfaces in Three Dimensions:

  424. Cartesian equation of a plane,  knowing its closest point from the origin.
  425. Helicoid.  Surface of minimal area first studied by  Meusnier  in 1776.
  426. Ruled surfaces:  Cone, conic hyperboloid, helicoid, etc.
  427. Developable surfaces
  428. Surfaces of revolution:  Parallel and meridians are lines of curvature.
  429. Guldin's theorems:  Surface area and volume of a solid of revolution.
  430. Euler's catenoid:  Surface of revolution of  least surface area.
  431. Surfaces of constant mean curvature (CMC).  The shapes of soap film.
  432. Beltrami's pseudosphere:  Surface of revolution with constant curvature.
  433. Quadric surfaces  =  quadratic equations  (degree n-1 in n dimensions).
  434. Perfect monkey saddle:  A minimal surface with ternary axial symmetry.
  435. Convex combinations of two surfaces.
  436. Dual pair of surfaces.
  437. Intrinsic equation of a surface

    Gears:

  438. Glossary  of terms related to gears.
  439. Gear ratio:  Ratio of the input rotation to the output rotation  (signed).
  440. Planar curves  rolling without slipping while rotating about two fixed points.
  441. Congruent ellipses  roll against each other while revolving around their foci.
  442. Elliptic gears:  A family of gears which include ellipses and sine curves.
  443. Watchmaker gearsOgival surfaces for pinions & radial planes for wheels.
  444. La Hire's theorem :  An hypocycloid of ratio  2  is a straight line.
  445. Cycloidal gear:  Epicycloidal addendum curve  & hypocycloidal dedendum.
  446. The law of conjugate action  was formulated by  Leonhard Euler  (c. 1754).
  447. Involute tooth profiles  provide a  uniform  rotational speed ratio.
  448. Harmonic Drive:  A flexspline  with 2 fewer teeth than the circular spline.
  449. Circular arc helical gears:   E. Wildhaber (1923)  &  M.L. Novikov (1956).
  450. Double circular arc helical gears  were standardized by the Chinese in 1981.

    Horology:

  451. Sidereal time:  46879  sidereal days   =   46751  mean solar days.
  452. Daniels coaxial escapement:  A major horological innovation.

    Polyhedra (3D), Polychora (4D), Polytopes (nD)

  453. Hexahedra.  The cube is not the only polyhedron with 6 faces.
  454. Fat tetragonal antiwedge:  Chiral hexahedron of unit volume and  least area.
  455. Duality:  To a face of a polyhedron corresponds a vertex of its dual.
  456. Enumeration of polyhedra:  Convex polyhedra with n faces and k edges.
  457. The 5 Platonic solids:  Cartesian coordinates of the vertices.
  458. Symmetries  may  equate all commensurate components of a polyhedron.
  459. Equimetric polyhedra  feature constant measures for all elements of a kind.
  460. There are 75 or 76 nonprismatic uniform polyhedra  (18 of them convex).
  461. The 13 Archimedean solids  and their  duals  (Catalan solids).
  462. Every  isogonal  family  is typified by a  uniform  polyhedron.
  463. Polyhedra in certain families  are named after one prominent polygon.
  464. Some special polyhedra  may have a traditional (mnemonic) name.
  465. Deltahedra  have equilateral triangular faces. Only 8 deltahedra are convex.
  466. Johnson Polyhedra and the associated nomenclature.
  467. Polytopes  are the n-dimensional counterparts of 3-D polyhedra.
  468. A simplex of touching unit spheres  may allow a center sphere to bulge out.
  469. Regular Antiprism:  Height and volume of a regular n-gonal antiprism.
  470. The Szilassi polyhedron  features 7 pairwise adjacent hexagonal faces.
  471. Wooden buckyball:  Cutting 32 blocks to make a truncated icosahedron.
  472. Zonogons, zonohedra, zonotopes.  Zones and zonoids.
  473. Plesiohedra  are space-filling:  Cuboctahedron, truncated octahedron, etc.
  474. PyritohedronOne  dodecahedral pentagonal isohedron is space-filling.

    Dice

  475. 16 possible standard dice  (opposite faces add up to  7).  Two handedness.
  476. 30  labelings of a die:  For  16  of them, opposite faces  never  add up to  7.
  477. 3-sided spindle:  A 9-hedron with 6 unstable faces.
  478. Nontransitive dice:  Every die is dominated by another die from the set.
  479. Sicherman dice  yield any total with the same probability as a regular pair.
  480. Percentile dice  and other ways several dice can have equiprobable sums.
  481. Polyhedral dice  were popularized by  rôle playing games.
  482. Commonly available dice sizes:  Small, medium, large, jumbo and giant.
  483. Convex isohedra  are fair dice, by reason of  symmetry  between faces.
  484. Round dice:  Outer isohedral marks  &  steel ball in an  isogonal  cavity.
  485. Scalene  isogonal polyhedra.  Their duals are  scalene  isohedra.
  486. Juryeonggu:  Korean die with  8  hexagonal faces and  6  square ones.
  487. Fairness of a non-isohedral die  may depend on the way it's tossed.
  488. Are there any  intrinsically  fair dice  which aren't isohedral?
  489. Necessary conditions  an  absolutely fair  die must satisfy.
  490. Quasistatic  probability is proportional to the  solid angle  a face subtends.
  491. Thermal tossing  puts a face of minimal height at the  bottom.
  492. Balanced mesohedral dice  are fair for  both  quasistatic and thermal tossing.
  493. Mesodecahedron:  Mesohedron with  10  faces.
  494. Mesopentahedron:  The mesohedral proportions of a  rhombic pyramid.
  495. Mesoheptahedron:  Mesohedron with  7  faces.
  496. Statistical bias  of unfair dice.

    Isohedra.  The symmetry of fair dice.

  497. Classification of all convex isohedra.  Intrinsic fair dice.
  498. Disphenoids  are  tetrahedra  where opposing edges have equal length.
  499. The hexakis icosahedra  (120 faces)  include the  disdyakis triacontahedra.
  500. Two chiral fair dice:  No mirror symmetry,  24  or  60  pentagonal faces.
  501. A pseudo-isohedral die.  Its faces are congruent, but is it fair?

    Graph Theory

  502. The bridges of KönigsbergEulerian graphs  and the birth of  graph theory.
  503. Undirected graphs  are digraphs with  symmetrical  adjacency matrix.
  504. Adjacency matrix  of a directed graph  (digraph)  or of a  bipartite graph.
  505. The 3-utilities problem:  Providing 3 cottages with water, gas & electricity.
  506. Silent Circles:  An enumeration based on adjacency matrices  (Alekseyev).
  507. Silent Prisms:  Modifying the screaming game for short-sighted people.
  508. Tallying  markings of one edge per node where no edge is marked twice.
  509. Line graph:  Nodes of L(G) are edges of G  (connected  iff  adjacent in G).
  510. Transitivity:  Vertex-transitive and/or edge-transitive graphs.
  511. Desargues graph  and  distance transitivity.
  512. Tensor product  of two graphs  (directed or not).
  513. Hedetniemi's conjecture  (1966).  Disproved by  Yaroslav Shitov,  in 2019.
  514. The brain as a graph.  Blue-Brain project (2005-) of  Henry Markam.
  515. Heterosexuality:  Male promiscuity is  the same  as female promiscuity!

    Algebra

  516. Factorial zero is 1,  so is an empty product.  An empty sum is 0.
  517. Anything to the power of 0  is equal to 1, including 0 to the power of 0.
  518. Zero is divisible by anything  but it divides  only  itself!
  519. Idiot's Guide to Complex Numbers.
  520. Using the Golden Ratio  (f)  to express the 5 [complex] fifth roots of unity.
  521. "Multivalued" functions are functions defined over a Riemann surface.
  522. Square roots are inherently ambiguous for negative or complex numbers.
  523. The difference of two numbers,  given their sum and their product.
  524. All symmetric polynomials of 3 variables  are determined by the first three.
  525. Geometric progression of 6 terms.  Sum is 14,  sum of squares is 133.
  526. Quartic equation  involved in the classic  "Ladders in an Alley"  problem.

    Special Polynomials

  527. Chebyshev polynomials  express  cos nq  as a function of  cos q
  528. Chebyshev polynomials  of the second kind  obey the same recurrence...
  529. Legendre polynomials  and  zonal harmonics.
  530. Laguerre polynomials.  Hypergeometric confluent function.
  531. Hermite polynomials.  Eigenstates of the quantum harmonic oscillator.
  532. Bessel polynomials
  533. Bernoulli polynomials
  534. Faulhaber polynomials
  535. Euler polynomials
  536. Mittag-Leffler polynomials
  537. Cyclotomic polynomials  are irreducible over the rationals.
  538. Lucas coefficients  form polynomials dividing cyclotomic polynomials.
  539. The Art of Polynomial Factorizations.  Manufacturing remarkable identities.

    Matrices and Determinants

  540. Permutation matrices  include the identity matrix and the exchange matrix.
  541. Gil's matrix.  The favorite square matrix of professor  W. Gilbert Strang.
  542. Operations on matrices  are conveniently defined using  Dirac's notation.
  543. Triangular matrices.  Proper isomorphism between  upper  and  lower  ones.
  544. The determinant  is proportional to any  completely antisymmetrical  form.
  545. MinorsFirst minors  are obtained by deleting one row and one column.
  546. Adjugate of a matrix:  Transpose of its cofactor matrix  A adj(A) = det(A) I
  547. Eigenvectors and eigenvalues  of an operator or a matrix.
  548. The numerical range of a complex matrixLocus  of its  Rayleigh ratios.
  549. The characteristic polynomial  of an operator doesn't depend on the basis.
  550. The minimal polynomial  has the same zeroes but no multiple roots.
  551. Cayley-Hamilton theorem:  A matrix vanishes its characteristic polynomial.
  552. Normal matrices  and  diagonalizable matrices.
  553. Totally positive  generalized Vandermonde matrices  (fractional  powers).
  554. Cholesky decomposition   L L*   of an Hermitian matrix.
  555. Toeplitz matrix:  Constant diagonals.
  556. Circulant matrix:  Cyclic permutations of the first row.
  557. Linear recurrences of order  k-1  which define sequences of period  k.
  558. Wendt's Determinant:  The circulant of the binomial coefficients.
  559. Hankel matrix:  Constant skew-diagonals.
  560. Catberg matrix:  Hankel matrix of the reciprocal of  Catalan numbers.
  561. Hadamard matrix:  Unit elements and orthogonal columns.
  562. Sylvester matrix  of two polynomials has their resultant for determinant.
  563. The discriminant of a polynomial is the resultant of itself and its derivative.
  564. Pfaffian:  Polynomial whose square equals an antisymmetric determinant.
  565. The numerical range of a complex matrixLocus  of its  Rayleigh ratios.
  566. Matrices with coefficients in a noncommutative ring.
  567. Matrix exponential.  The exponential of a matrix is an invertible matrix.
  568. Matrix gamma function.  The reciprocal gamma is an entire function.
  569. Matrix Mittag-Leffler functions.  Applications to  fractional calculus.
  570. Values of analytic functions for nilpotent matrices  reduce to  finite  sums.

    Trigonometry

  571. Trigonometric functions:  Memorize a simple picture for 3 basic definitions.
  572. Solving triangles  with the law of sineslaw of cosines  &  law of tangents.
  573. Spherical trigonometry:  Triangles drawn on the surface of a sphere.
  574. Sum of tangents of two half angles,  in terms of sums of sines and cosines.
  575. The absolute value of the sine of a complex number.
  576. All positive rationals  (& square roots)  as trigonometric functions of zero!

    Elementary Functions and Special Functions

  577. Function types:  Polynomial, rational, algebraic, transcendental, special.
  578. Exact solutions  to transcendental equations.
  579. The sine function:  How to compute it numerically.
  580. Chebyshev economization  saves billions of steps in common computations.
  581. The Gamma function:  Its definitions, properties and special values.
  582. Lambert's W function  is used to solve practical transcendental equations.
  583. Dilogarithm, trilogarithm and polylogarithms.  Jonquière's function.
  584. Deformed exponential functionEntire function  with a complex parameter.

    Gamma Function

  585. The Gamma function:  Its definitions, properties and special values.
  586. Euler's integral of the second kind  can define  G(z)  when  Re(z) > 0.
  587. Euler's reflection formulaG(z) G(1-z)  =  p / sin pz .
  588. Stirling's approximation:  An asymptotic expansion for factorials.
  589. Stirling's expansion  is a  divergent  asymptotic series.
  590. Hölder's theoremG  doesn't satisfy any algebraic differential equation.
  591. Kümmer's series  and the integral representation of  Log G (x).
  592. Knar's formula
  593. Euler's beta function (Euler, 1730).  Euler integral of the first kind.  B(x,y).
  594. Digamma  (Gauss' psi-function):  Logarithmic derivative of  G.

    Hypergeometric Functions

  595. Pochhammer's symbolUpper factorial of k increasing factors:  x(x+1)...
  596. Gauss's hypergeometric function:  2+1 parameters (and one variable).
  597. Kummer's transformations  relate different hypergeometric expressions.
  598. Sum of the reciprocal of Catalan numbers,  in closed hypergeometric form.
  599. Appell series.  Two-variable generalizations.
  600. WZ pairs.  Zeilberger's algorithm.  Gosper's algorithm.

    Theta Functions & Elliptic Functions

  601.  Adrien-Marie Legendre (1643-1727) Prototypical theta function
  602. Legendre's elliptic integrals
  603. Carlsons's canonical symmetric elliptic integrals
  604. Jacobi theta functions
  605. q-analogs
  606. Ramanujan theta function
  607. False theta functions,  (L.J. Rogers, 1894, 1917).
  608. Mock theta functions  were introduced by  S. Ramanujan,  in 1920.
  609. Partial theta functions

    Perimeter of an Ellipse

  610. Circumference of an ellipse:  Exact series and approximate formulas.
  611. Ramanujan I and Lindner formulas:  The journey begins...
  612. Ramanujan II:  An  awesome  approximation from a mathematical genius.
  613. Hudson's Formula  and other  Padé approximations.
  614. Peano's Formula:  The sum of two approximations with cancelling errors.
  615. The YNOT formula  (Maertens, 2000.  Tasdelen, 1959).
  616. Euler's formula  is the first step in an exact expansion.
  617. Naive formulap  ( a + b )  features a  -21.5% error for elongated ellipses.
  618. Cantrell's Formula:  A modern attempt with an overall accuracy of 83 ppm.
  619. From Kepler to Muir.  Lower bounds and other approximations.
  620. Relative error cancellations in symmetrical approximative formulas.
  621. Complementary convergences of two series.  A nice foolproof algorithm.
  622. Elliptic integrals & elliptic functions.  Traditional symbols vs. computerese.
  623. Padé approximants  are used in a whole family of approximations...
  624. Improving Ramanujan II  over the whole range of eccentricities.
  625. The Arctangent Function  as a component of several approximate formulas.
  626. Abed's formula  uses a parametric exponent to fine-tune the approximation.
  627. Zafary's formula.  Improved looks for a brainchild of  Shahram Zafary.
  628. Rivera's formula  gives the perimeter of an ellipse with 104 ppm accuracy.
  629. Better accuracy  from Cantrell, building on his own previous formula
  630. Rediscovering  a well-known exact expansion due to Euler (1773).
  631. Exact expressions for the circumference of an ellipse:  A summary.

    Surface Area of an Ellipsoid

  632. Surface Area of a Scalene Ellipsoid:  The general formula isn't elementary.
  633. Thomsen's Formula:  A simple symmetrical approximation.
  634. Approximate formulas  for the surface area of a scalene ellipsoid.
  635. Nautical mile:  "Average"  minute of latitude  on an oblate spheroid.
  636. Great ellipses  have the same center as the ellipsoid they are drawn on.
  637. Area enclosed by a curve  drawn on the surface of an  oblate spheroid.
  638. Pseudo-straight boundaries  of areas varying quadratically with longitude.

    Calculus

  639. Derivative:  The slope of a function and/or something more abstract.
  640. The  logarithmic derivative  of a product  is the sum of those of its factors.
  641. Integration: The Fundamental Theorem of Calculus.
  642. Integration by parts:  Reducing an integral to another one.
  643. Wallis' integralsIntegration by parts  yields a recurrence relation.
  644. Length of a parabolic arc.
  645. Top height of a curved bridge  with a  5280 ft  span and a  5281 ft  length.
  646. Sagging:  A cable which spans 28 m and sags 30 cm is 28.00857 m long.
  647. The length of the arch of a cycloid  is 4 times the diameter of the wheel.
  648. Integrating the cube root of the tangent function.
  649. Changing inclination  for a particle moving along a parabola.
  650. Algebraic area of a  figure 8  may be the sum or the difference of its lobes.
  651. Area surrounded by an oriented planar loop  which  may  intersect itself.
  652. Linear differential equations  of higher order and/or in several variables.
  653. Theory of Distributions:  Convolution products and their usage.
  654. Laplace Transforms:  The Operational Calculus of Oliver Heaviside.
  655. Integrability  of a function and of its absolute value.
  656. Analytic functions of a linear operator.  Defining  f (D)  when  D  is d/dx.
  657. Generalizing the Cauchy-Schlömilch substitution  (for definite integrals).
  658. Feynman's trick:  Put a parameter in the integrand and differentiate along it.
  659. Malmsten integrals:  Tough family involving  Log Log x  (Malmsten, 1842).

    Differential Equations

  660. Ordinary differential equations.  Several examples.
  661. A singular change of variable  may not be valid over a maximal domain.
  662. Vertical fall  against fluid resistance  (valid for viscous and quadratic drag).
  663. Jet propulsion:  Expelling stuff at speed u makes  (u-v) m  remain constant.
  664. Riccati equation:  When  y'  is a quadratic function of  y...
  665. Sturm-Liouville problem  has nontrivial solutions only for some parameters.
  666. Frobenius method  to solve a second-order differential equation.
  667. Fuchsian conditions  for the applicability of the  method of Frobenius.

    Differential Forms  &  Vector Calculus

  668. Differential forms  and  partial derivatives.
  669. Generalizing the  fundamental theorem of calculus.
  670. Vectorial  surface  dotted into an observing direction gives  apparent  area.
  671. Practical identities  of vector calculus.

    Optimization:  Operations Research, Calculus of Variations

  672. Stationary points  (saddlepoints)  are where  all  partial derivatives vanish.
  673. Classical optimizations:  Heron's problem, Dido's problem, etc.
  674. Single-variable optimization:  Derivative vanishes at any interior extremum.
  675. The angle maximization problem of Regiomontanus.  Historical case study.
  676. Extrema of a function of two variables  obey a  second-order  inequality.
  677. Saddlepoints of a multivariate function.  One equation for each variable.
  678. Lagrange multipliers:  Constrained optimization of an  objective function.
  679. Minimizing the lateral surface area of a cone  of given base and volume.
  680. Euler-Lagrange equations  hold along the path of a  stationary  integral.
  681. Noether's theorem:  One conserved quantity for each Lagrangian symmetry.
  682. Geodesics  in a 2-dimensional surface are curves of least length.
  683. The brachistochrone curve  is a cycloid (in a uniform gravitational field).
  684. Dido's problem.  A geometric solution to the  oldest  variational problem.
  685. Isoperimetric Inequality:  The largest area enclosed by a loop of unit length.
  686. Plateau  extended the calculus of variations from paths to membranes.
  687. Embedded minimal surfaces: Plane, catenoid, helicoid, Costa's surface, etc.
  688. Connecting blue dots to red dots  in the plane, without any crossings...
  689. Torricelli points  and the shortest way to connect three guven dots.
  690. The Honeycomb Theorem:  A conjecture of old, proved by  Thomas Hales.
  691. Symmetrical monkey saddles  of zero  mean curvature.
  692. Counterexamples to Kelvin's conjecture.  Unit spatial tiles of least area.
  693. J.J. Thomson's problem:  N  repelling charges on a spherical surface.
  694. Monge-Kantorovich optimal transport problem.

    Analysis,  Convergence,  Series,  Complex Analysis

  695. Cauchy sequences  help define real numbers rigorously.
  696. Borderline convergence.  Prototypes of series which are  barely  convergent.
  697. A simple proof of convergence.  Part of the mathematical folklore.
  698. Permuting the terms of a series  may change its sum arbitrarily.
  699. Two decreasing divergent series  may have a convergent minimum!
  700. Uniform convergence  of continuous functions makes the limit continuous.  Augustin Cauchy 
 (1789-1857)  Joseph Fourier 
 (1768-1830)
  701. Defining integrals:  Cauchy, Riemann, Darboux...
  702. Lebesgue integralsHorizontal  slices,  not vertical ones !
  703. Cauchy principal value of an integral.
  704. Fourier series.  A simple example.
  705. Infinite sums evaluated with  Fourier series.
  706. A double sum is often the product of two sums  (possibly Fourier series).
  707. At a jump,  a Fourier series is the half-sum of its left and right limits.
  708. Gibbs phenomenon;  9% overshoot of partial Fourier series near a jump.
  709. Method of Frobenius  about a regular singularity of a differential equation.
  710. Laurent series  of a function about one of its poles.
  711. Cauchy's Residue Theorem  is helpful to compute difficult definite integrals.
  712. Tame complex functions:  Holomorphic and meromorphic functions.
  713. Cauchy-Riemann equations.  Also known as d'Alembert-Euler conditions.
  714. Wirtinger derivatives.  Calculus methods for several complex variables.
  715. Cauchy integral formula.  Fundamental theorem of complex analysis.
  716. Argument principle.  The  logarithmic integral  counts zeros ans poles.
  717. Rouché's theorem:  Nearby holomorphic functions have nearby zeros.
  718. Riemann mapping theorem  and biholomorphic functions.
  719. Univalent functions  (analytic injections)  have nonvanishing derivatives.
  720. Schlicht functions  are  normalized  analytic injections from the unit disk.
  721. Starlike schlicht functions  &  Bieberbach's conjecture  restricted to these.
  722. Maximum-modulus principle:  No local maxima for holomorphic functions.

    Limits

  723. Epsilon-Delta.  Elementary concept of a limit in a metric space.
  724. A function  sandwiched  between two functions of limit  L  has limit  L.
  725. L'Hospital's rule  on the limit of the ratio of two vanishing quantities.

    Power Series  &  Analytic Continuations

  726. Taylor's expansion  of a differentiable function as a power series.
  727. The remainder  of a Taylor expansion can be expressed in several ways.
  728. Lagrange  used Taylor's expansion to redefine Calculus  algebraically.
  729. Radius of convergence.  The convergence disk of a complex power series.
  730. Stolz sector:  Slice of the disk of convergence with its apex on the boundary.
  731. Composition  of two  (formal)  power series.
  732. Lagrange inversion formula  and  Lagrange-Bürmann inversion formula.
  733. The exponential series.  Proving that   exp (x)  exp (y)   =   exp (x+y)
  734. Analytic continuation:  Power series that converge on overlapping disks.
  735. Decimated power series  are equal to finite sums involving  roots of unity.
  736. Splitting a power series  into its  k  classes of indices modulo  k.
  737. Calculus of finite differences.  Analog of  calculus  for discrete sequences.

    Asymptotic Analysis

  738. Fundamentals of asymptotics.  The simple definition of a powerful tool.
  739. The  big O  notation  is named after  Paul Bachman  and  Edmund Landau.
  740. Solving aymptotic equations.  Method of dominant balance.
  741. Asymptotic expansions  about a limit point may or may not converge.
  742. Moments, Stieltjes functions and Stieltjes series.
  743. Extracting information  from an asymptotic series.
  744. Stirling's approximation  and  Stirling's series.
  745. Hyper-asymptotics:  Aymptotics beyond all orders.
  746. Stokes phenomenonWedge  where an asymptotic approximation is valid.
  747. WKB method:  Asymptotic order-reduction of a linear differential equation.

    Summation of Divergent Series

  748. Summing geometric series:  Equating things that match over some domain.
  749. Definitions and notations.  Distinguishing a  formal series  from its  sum.
  750. Desirable properties of summation methods  yield rules for handling them.
  751. Stability of  geometric series  is often just assumed.
  752. All series with vanishing terms are stable,  under any  linear  summation.
  753. Cauchy product of two series.  It's a stable series if at least one factor is.
  754. Dirichlet convolution:  Is the sum of a product the product of the sums?
  755. Infinite products:  Exponentials of infinite series.
  756. Double summation.  Series whose terms are themselves sums of series.
  757. Original  Bernoulli numbers.  Generated by   z / (1-exp(-z)).  So,  B1 = ½.
  758. Formal series are ketsLinear  summation methods are  bras.
  759. Summation by convergence  is compatible with  regular  summations.
  760. Functional analysis:  Using the  Hahn-Banach extension theorem.
  761. Euler summation  (1746).
  762. Cesàro summations  (1890).
  763. Borel summation  (1899).
  764. Nørlund summations  All are linear, regular and consistent  (1919).
  765. Abel summation .
  766. Lindelöf summation  (1903).
  767. Mittag-Leffler summation method  (1908).
  768. Valiron summability  (1917).
  769. Generalized summation methods,  using arbitrary  convergence factors.
  770. When does a series have a stable sum?  Stability theorems.
  771. Weierstrass summation:  Summation by  analytic continuation  (1842).
  772. Resummation with Meijer G-functions.
  773. Zeta-function regularization  (1916).  Dubbed  heat-kernel regularization.
  774. Wonders of unstable summations.  Linear summations of unstable series.
  775. Decimated power series  can be worked out for divergent series too.
  776. Stretching a series  doesn't change its sum,  except when it does...
  777. Invariants of a series  and the series of the sums of its decimations.
  778. Divergent Fourier series.  An example of a stretched divergent series.
  779. Parametrized differential equations  and their solutions as asymptotic series.
  780. The Mercator series  is the integral of the  geometric series  (1668).
  781. Decimating  the harmonic series,  by taming a  multivalued  continuation.
  782. Sum of the harmonic series:  ln 2p  =  1.83787706640934548356065947...
  783. Darboux's summation formula  generalizes the  Euler-Maclaurin formula.
  784. Ramanujan's irregular summation  (1913).
  785. Summations of p-adic integers  for a special radix or for all of them.
  786. Moments, Stieltjes functions and Stieltjes series.
  787. Shanks' transformation  greatly accelerates an  alternating  convergence.
  788. Richardson extrapolation.
  789. Index-free acceleration of sequences with harmonic convergence.
  790. Parametrized acceleration  based on the expected type of convergence.
  791. Padé approximant.  Simplest rational function of given Taylor expansion.
  792. Compensated derivatives.  In any ring or power-associative algebra.

    Infinite Products and Pole Expansions.

  793. Wallis product (1655)  due to John Wallis (1616-1703).
  794. Euler's product formula for sine,  using the  normalized sinc function.
  795. Factorization of the reciprocal Gamma function  by  Karl Weierstrass.
  796. Weierstrass factorization theorem (1876).
  797. Euler's partial-fraction expansion of the  cotangent  function.
  798. Mittag-Leffler's theorem (1876).
  799. Well-known pole expansions  of a few  meromorphic functions.

    Harmonic Analysis  &  Fourier Expansions

  800. Euler's formulas  extract a harmonic component from a trigonometric sum.
  801. Fourier expansion of a function:  The sum of all its harmonic components.
  802. Dirichlet's conditions  are  sufficient  for a Fourier expansion to  converge.
  803. Divergent Fourier expansion  of the  tangent  function.
  804. Cantor's proofs of unicity  and the introduction of  U-sets.
  805. Simples rectangular waves.  From periodic pulses to square waves.
  806. Sawtooth functions  can be obtained by integration of rectangular waves.
  807. Clipped sinusoids.  The  harmonic distortion  introduced by hard clipping.

    Fourier Transform  &  Tempered Distributions

  808. The direct product of two functions  is a function of two variables.
  809. Convolution  as an inner operation among numerical functions.  Joseph Fourier 
 (1768-1830)
  810. Duality:  The product of a  bra  by a  ket  is a (complex) scalar.
  811. distribution  associates a scalar to every  test function.
  812. Schwartz functions  are smooth  rapidly decreasing  test functions.
  813. Tempered distributions  are continuous functionals over Schwartz functions.
  814. The Fourier Transform  associates a  tempered distribution  to another.
  815. Competing definitions of the Fourier transform.  For the record.
  816. Parseval's theorem  (1799).  The Fourier transform is unitary.
  817. Noteworthy distributions and their Fourier transforms Antoine Parseval 
 (1755-1836)
    • Dirac's  d  and the  uniform  distribution  ( f (x) = 1).
    • The  signum  function  sgn(x)  and its transform:   i / ps
    • The Heaviside step function  H(x) = ½ (1+sgn(x))  and its transform.
    • The square function  P(x) = H(x+½)-H(x-½)   and  sinc ( ps )
    • The triangle function  L(x)   and   sinc2 ( ps )
  818. The normalized Gaussian distribution  is its own Fourier transform.
  819. Central Limit Theorem  (CLT).
  820. Far image of a picture on translucent film  is its Fourier transform.
  821. Sampling formula:  The unit comb  (Shah function)  is its own Fourier transform.
  822. Crystallography  using X-ray diffraction  (Max von Laue, Nobel 1914).
  823. SpectrumSupport  of the Fourier transform.
  824. Quasicrystals:  Distributions with a discrete support and a discrete spectrum.
  825. The Radon transform  (used in lateral tomography)  is easily inverted.

    Discrete Fourier Transforms &  Fast Fourier Transform

  826. Discrete Fourier Transform,  defined as a  unitary involution.
  827. Discrete Cosine Transform.  JPEG  lossy compression.

    Set Theory and Logic

  828. The logic of Aristotle.  Syllogisms about  categorical propositions.
  829. The  Barber's Dilemma  is not a paradox, if analyzed properly.
  830. What is infinity?  There's more to it than a pretty symbol  (¥).
  831. Peano's axioms  provide a rigorous definition of the  set of natural integers.
  832. Ordered numbers:  From integers to rational, real and surreal numbers.
  833. There are more real than rational numbers.  Cantor's  diagonal argument.
  834. Cantor's ternary set.  A vanishing set of reals  equipollent  to the whole line.
  835. The language of set theory:  Symbols and idioms useful to  anybody.
  836. The axioms of set theory:  Basic ZF axioms  (without any  choice principle).
  837. The Axiom of choice (AC)  is the most powerful  choice principle  (ZFC).
  838. The Axiom of restriction  isn't needed in ZFC set theory  (AC implies it).
  839. Equivalents and lesser alternatives  to the  Axiom of choice.
  840. The existence of nonmeasurable sets  is guaranteed by the Axiom of choice.
  841. Should we drop the  Axiom of choice ?
  842. Binary cartesian products.  Multiple  cartesian products.  Infinite ones.
  843. Binary relations  between two sets are subsets of their  cartesian product.
  844. Functions and applications  are special types of  binary relations.
  845. A set is smaller than its powerset:  A simple proof applies to all sets.
  846. Transfinite cardinals  describe the various sizes of  infinite  sets.
  847. The continuum hypothesis:  Is the continuum the smallest uncountable set?
  848. Transfinite ordinals:  Counting to infinity... and beyond.
  849. Hartogs number  of a set  (well-ordered or not).  A well-defined ordinal.
  850. Surreal numbers  include reals, transfinite ordinals, infinitesimals & more.
  851. Multidimensional (hypercomplex) numbers:  To octonions and beyond.
  852. Naming hypercomplex numbers  beyond  sedenions.
  853. Power associativity:  What multiplication needs to allow  exponentiation.
  854. A set belongs to a  class  in NBG  (a  conservative extension  of ZFC).
  855. Tarski-Grothendieck theory (TG)  is a  nonconservative  extension of ZFC.

    Category Theory

  856. Categories:  History, motivation, definition.  Objects & morphisms.
  857. Initial objects and final objects.  A  zero object  is both initial and final.
  858. Finite categories.
  859. Set :  Category of sets and functions.
  860. Rel :  Category of sets and relations.
  861. Example of categories:  Large or small, abstract or concrete.
  862. Constructing new categories  from pre-existing ones.
  863. Functors  are homomorphisms between categories.
  864. Cat :  Category of small categories and functors.
  865. Natural transformations  are morphisms in a category of functors  (1942).
  866. Duality.  The opposite of a category is obtained by reversing all arrows.
  867. Isomorphisms in a category  are reversible morphisms (arrows) in it.
  868. Groupoid:  Small category in which all morphisms are reversible.
  869. The product of two objects,  if defined,  is an equivalence class of objects.
  870. Exponential of two objects.  Counterpart of  function spaces  for sets.
  871. Cartesian-closed categories (CCC).  Well-defined products & exponentials.
  872. Yoneda lemma  and  Yoneda embedding.
  873. Adjoint functors.
  874. Monads.
  875. Abelian categories.
  876. Regular categories.
  877. Exact categories.
  878. Exact sequences of morphisms.  The image of one is the kernel of the next.
  879. Homologies and cohomologies.  How sequences fail to be exact.
  880. Should  categories  replace  sets  at the foundation of all mathematics?
  881. Categorial quantum mechanics.  Describing physics with  category theory.

    Topos  (Category Theory)

  882. Presheaves and sheaves.
  883. Bohr topos.
  884. Elementary topos  (Lawvere).
  885. Grothendieck topos.
  886. Kochen-Specker theorem.  Categorial expression of quantum theory.

    Alain Connes' Noncommutative Geometry

  887. Von Neumann's algebras.
  888. Connes-Consani plane connection.

    Integer Arithmetic, Number Theory

  889. The number 1 is not prime.  Good definitions allow simple theorems.
  890. Composite numbers  aren't prime,  but the converse need not be true...
  891. Two prime numbers  whose sum is equal to their product.
  892. Gaussian integers:  Factoring into primes on a two-dimensional grid.
  893. The least common multiple,  obtained  without  factoring into primes.
  894. Standard factorizations:   n4 + 4   is never prime for   n > 1   because...
  895. High-order Aurifeuillian factorizations  using polynomial identities.
  896. Euclid's algorithm  gives the GCD  and  the related Bézout coefficients.
  897. Bézout's Lemma:  The GCD of p and q is of the form  u p + v q.
  898. Greatest Common Divisor  (GCD)  defined for all commensurable numbers.
  899. Linear equation in integers  can be solved using  Bézout's lemma.
  900. Pythagorean Triples:  Right triangles whose sides are coprime integers.
  901. The number of divisors of an integer.
  902. Perfect squares are the only integers with an odd number of divisors.
  903. The product of all divisors  is  often  a perfect square.
  904. Even  perfect numbers  are well-known.  Are there any odd ones out there?
  905. Mersenne primes  are the odd parts of the  even  perfect numbers.
  906. Multiperfect & hemiperfect numbers.  Whole or half-integral abundancies.
  907. Fast exponentiation by repeated squaring.
  908. Partition function.  How many collections of positive integers add up to 15?
  909. A Lucas sequence  whose oscillations never carry it back to -1.
  910. A bit sequence  with intriguing statistics.  Counting squares between cubes.
  911. Binet's formulas:  N-th term of a sequence obeying a linear recurrence.
  912. The square of a Fibonacci number  is  almost  the product of its neighbors.
  913. D'Ocagne's identity  relates conjugates products of Fibonacci numbers.
  914. Catalans's identity  generalizes  Cassini's Identity.
  915. Faulhaber's formula  gives the sum of the p-th powers of the first n integers.
  916. Multiplicative functions:  If a and b are  coprime,  then  f (ab) =  f (a) f (b).
  917. Moebius function:  Getting  N  values with  O(N Log(Log N))  additions.
  918. Dirichlet convolution  is especially interesting for  multiplicative  functions.
  919. Fractional  Dirichlet powers of arithmetic functions  with  positive  lead.
  920. Dirichlet powers of the Möbius function  and/or its inverse  u = 1,1,1,1,1...
  921. Convolutive subgroup  generated by  u = 1,1,1,1,1...  and  N = 1,2,3,4,5...
  922. Dirichlet powers of multiplicative functions  are given by a  superb formula.
  923. Totally multiplicative functions  are the simplest multiplicative functions.
  924. Dirichlet characters  are important  totally multiplicative functions.
  925. Euler products  for L-functions.  Generalized  Riemann hypothesis.
  926. Logarithms of L-functions.  Sums of series indexed by the  prime powers.
  927. Expressing L-functions in term of Hurwitz zeta functions  and vice-versa.
  928. Additive functions:  If a and b are  coprime,  then  f (ab) =  f (a) + f (b).

    Cryptography:  Ciphers and Codebreaking

  929. Simple shift ciphers:  Caesar's cipher, Augustus cipher.  ROT13.
  930. Substitution cipher.
  931. Tranposition ciphers.  Tri-code.
  932. Disk ciphers.
  933. The Vigenère cipher  can be broken with the Babbage-Kasisky method.
  934. Bazeries cylinders  consist of many stacked coding disks  (Jefferson, 1795).
  935. Rotor machines  were invented in 1915 and still used in the 1980s.
  936. The German Enigma.  Broken by  Marian Rejewski  and  Alan Turing.
  937. Backdoor  in  elliptic curve cryptography.  NSA surveillance controversy.
  938. The Voynich manuscript  (c. 1420):  The book that nobody could read.

    Modularity:  Elliptic curves and modular forms

  939. Fermat's Last Theorem (FLT)  is a consequence of the  modularity theorem.
  940. Elliptic functions  are doubly-periodic functions of a complex variable.
  941. Elliptic curves:  Nonsingular cubics in the projective plane.
  942. Modular forms.
  943. Modularity theorem:  Every  elliptic curve  is  modular.
  944. Ramanujan's Tau Function  and the Sato-Tate conjecture  (proved in 2011).

    Positional Numeration  &  Number Systems

  945. Modular arithmetic can tell the last digits of extremely large numbers.
  946. Leading digits of  insanely  large numbers can't be found by logarithms.
  947. Powers of ten  expressed as products of two factors  without zero digits.
  948. Divisibility by 7, 13, and 91  (or by B2-B+1 in base B).
  949. Lucky 7's.  Any integer divides a number composed of only 7's and 0's.
  950. The decimal representation of rational numbers  is  ultimately periodic.
  951. Midy's theorem:  Properties of periods in radix-B numeration.
  952. Numbers with two decimal expansions.  E.g.,  1  and  0.99999999999999...
  953. Binary and/or hexadecimal numeration  for floating-point numbers as well.
  954. Extract a square root the old-fashioned way.
  955. Ternary system:  Is base 3  really  the best radix for positional numeration?
  956. Dozenal counting:  (Roman) ounce, as, dozen, gross, great-gross.
  957. Sexagesimal numeration  is still with us.  Cuneiform writing isn't.

    Prime Numbers

  958. Divisors  can be defined in any additive semigroup.
  959. Relatively prime integers:  The  GCD  of two  coprime  integers is  1.
  960. A prime number  is a positive integer with 2 distinct divisors (1 and itself).
  961. Lemma:  Every integer larger than 1 has at least one prime factor.
  962. Fundamental theorem of arithmetic.  The factorization into primes is unique.
  963. Euclid's proof:  There are infinitely many primes.
  964. Dirichlet's theorem:  There are infinitely many primes of the form  kN+a.
  965. Green-Tao theorem:  Arbitrarily long arithmetic progressions of primes.
  966. Von Mangoldt's function  is  Log p  for a power of a prime p,  0 otherwise.
  967. Prime Number Theorem:  The probability that N is prime is roughly 1/ln(N).
  968. Riemann's power-prime counting function (J).  Riemann's explicit formula.
  969. The average number of factors  of a large number  N  is  Log N.
  970. The average number of distinct prime factors  of  N  is  Log Log N.
  971. The largest known prime:  Historical records, old and new.
  972. The Lucas-Lehmer Test  checks the primality of a Mersenne number  fast.
  973. Proth primes  are almost as fast to check as Mersenne primes.
  974. Sierpinski numbers  are moduli for which no  Proth number  is prime.
  975. Pratt primality certificates  give quick automated proofs of primality.
  976. The AKS test  determines the primality of any number  in polynomial time.
  977. Formulas giving only primes  may not help with new primes.
  978. Ulam's Lucky Numbers  and other sequences generated by sieves.

    Modular Arithmetic

  979. Chinese remainder theorem:  Remainders define an integer, within limits.
  980. Modular arithmetic:  The formal algebra of congruences, due to Gauss.
  981. Fermat's little theorem:  For a prime p not dividing aap-1 is 1 modulo p.
  982. Euler's totient functionf(n) counts the integers coprime to n, from 1 to n.
  983. Fermat-Euler theorem:  If  a is coprime to n,  a  to the  f(n)  is 1 modulo n.
  984. Carmichael's reduced totient function (l) :  A special divisor of the totient.
  985. 91 is a pseudoprime  to half of the bases coprime to itself.
  986. Carmichael Numbers:  An absolute pseudoprime  n divides  an-a  for any a.
  987. Chernik's Carmichael numbers:   3  prime factors   (6k+1)(12k+1)(18k+1).
  988. Other products  that yield a Carmichael number  iff  every factor is prime.
  989. Large Carmichael numbers  may be obtained in various ways.
  990. Conjecture:  Any odd integer coprime to its totient has Carmichael multiples.

    Group Theory and Symmetries

  991. Monoids  feature an  associative  operation and a  neutral element.
  992. The inverse of an element  comes in 2 flavors that coincide when both exist.
  993. Free monoid:  All the finite strings (words) in a given  alphabet.
  994. Raising something to the power of an integer.
  995. Groups  are monoids in which  every element  is invertible.
  996. A subgroup is a group  contained in another group.
  997. Ideals of a semigroup  are subsemigroups.
  998. Generators  of a group are not contained in any  proper  subgroup.
  999. Presentation of a group:  A set of generators followed by  relators.
  1000. Lagrange's theorem:  The order of a subgroup divides the order of the group.
  1001. Cauchy's theorem:  If a prime p divides |G|, some element of G has order p.
  1002. Sylow's theorems.  On the possible orders of subgroups of a finite group.
  1003. Normal subgroups  and their quotients in a group.
  1004. Wielandt's symbol  asserts that a set is a normal subgroup of a group.
  1005. Homomorphism:  The image of a product is the product of the images.
  1006. The symmetric group  on  E  consists of all the bijections of  E  onto itself.
  1007. Inner automorphisms:  Inn(G)  is isomorphic to  G  modulo its center.
  1008. Outer automorphism group:  The automorphisms of  G  modulo  Inn(G).
  1009. Complete groups  (unrelated to completeness  in metric or uniform spaces).
  1010. The conjugacy class formula  uses conjugacy to tally elements of a group.
  1011. Simple groups  are groups without  nontrivial  normal subgroups.
  1012. The derived subgroup  of a group is  generated  by its  commutators.
  1013. Direct product of two groups  (called a  direct sum  for additive groups).
  1014. Finite abelian groups  are either cyclic or direct sums of cyclic groups.
  1015. Holomorph of  G :  The canonical semi-direct product of  G  and  Aut(G).
  1016. Groups of small orders.  Basic families:  Cyclic groups, dihedral groups, etc.
  1017. Q8:  The  quaternion group.  Quaternion numbers  (Hamilton, 1843).
  1018. The gamma group  of order 32 is generated by Dirac's 4 gamma matrices.
  1019. D4:  An  incomplete  group of order 8, isomorphic to its automorphisms.
  1020. Enumeration  of  small  groups.  How many groups of order n?
  1021. Classification of finite simple groups,  by Gorenstein and many others.
  1022. Sporadic groupsTits Group, 20 relatives of Fischer's Monster, 6 pariahs.
  1023. Torsion of a group:  The set of all elements whose orders are finite.
  1024. Linear representations  are homomorphisms into a group of matrices.
  1025. Classical groups:  Their elements depend on parameters from a  field.
  1026. Projective qualifier  may denote a group modulo its own center.
  1027. The Möbius group  consists of homographic transformations of  CÈ{¥}.
  1028. The modular group  G  is the projective special linear group  PSL(2,Z).
  1029. Group structure of an elliptic curve.
  1030. Degenerate elliptic curve  consisting of a circle and a straight line.
  1031. Amenable groups  are locally compact topological groups allowing a  mean.
  1032. The Chameleon Groups  (F, T and V)  of  Richard J. Thompson  (1965).
  1033. Abelian sandpile groups.  The neutral element is not immediately obvious.
  1034. Lorentz transformations  may  change spatial orientation or time direction.
  1035. Symmetries of the laws of nature:  A short primer.
  1036. The renormalization group  is a subgroup of the  cosmic Galois group.

    Ring Theory:  Commutative & Noncommutative Rings

  1037. A Brief History of Rings.
  1038. Rings  are sets endowed with addition, subtraction and multiplication.
  1039. Divisors of zero  include all  nilpotentsZero-divisors  (if any)  are nonzero.
  1040. Units  are invertible elements.  That's also meaningful in  non-unital  rings.
  1041. Ideals  within a ring are  multiplicatively absorbent  additive subgroups.
  1042. Quotient ring, modulo an ideal:  The  residue classes  modulo that ideal.
  1043. Ring homomorphisms and isomorphisms.  All  kernels  are  ideals.
  1044. Nonzero characteristic:  Least  n  for which all sums of  n  like terms vanish.
  1045. The  SUN  ring has  8  elementsSmallest unital noncommutative  ring.
  1046. Idempotent elements  allow the  Peirce decomposition  of a ring.
  1047. Finite rings.  Smallest examples,  enumeration and classification.
  1048. Simple rings.  A simple ring has only  two  ideals;  {0} and itself.
  1049. Coprime ideals  and generalized  Chinese remainder theorem.
  1050. Bezout rings:  Rings where the sum of two principal ideals is principal.
  1051. Primary ideals  are to  ideals  what prime-powers are to integers.
  1052. Cauchy multiplication  is well-defined for  formal power series  over a ring.
  1053. Ring of univariate polynomials  A[X]  with coefficients in a given ring  A.
  1054. Noetherian rings  don't have any  infinite ascending chain  of ideals  (ACC).
  1055. Artinian ring:  Noetherian with every element either invertible or  nilpotent.
  1056. Lasker-Noether theorem.  Generalized  fundamental theorem of arithmetic.
  1057. Greatest common divisor (GCD)  always exists for a pair in a GCD domain.
  1058. Factorial domain (UFD).  GCD domain with ACC for  principal  ideals.
  1059. Galois rings.  Residues of modular polynomials,  modulo  one of them.
  1060. Hilbert rings,  where every prime ideal is an intersection of primitive ideals.
  1061. Abelian rings  are rings where every idempotent element is central.
  1062. Commutative local rings  and their modules:  Local algebra  (1938).
  1063. Topological rings  Both operators are  continuous.
  1064. Involutive rings  are endowed with an involutive anti-automorphism.
  1065. Etale homomorphisms of rings.

    Fields, Galois Fields and Skew Fields

  1066. Vocabulary:  We consider  skew fields  to be  noncommutative.  Some don't.
  1067. Fields  are commutative rings where all nonzero elements are invertible.
  1068. Quotient field  of a ring without  divisors of zero.
  1069. Wedderburn's TheoremFinite  division rings are necessarily  commutative.
  1070. Every  finite  integral domain is a field.
  1071. Galois fields  are the  finite fields.  Their orders are powers of primes.
  1072. Polynomials in a Galois field.  Irreducible and primitive polynomials.
  1073. The trivial field  is a singleton.  It's the only field where 0 is invertible.
  1074. Splitting field  of P in F[x] :  Smallest extension of F where P fully factors.
  1075. Perfect fields  include fields of characteristic zero and all finite fields.
  1076. The field of Laurent series.
  1077. Conway's Nim-Field  is algebraically complete.  It contains infinite ordinals.
  1078. Ternary multiplication  compatible with  ternary addition  (without "carry").

    Vector Spaces  (over a field) and Algebras

  1079. Vectors  were originally just differences between points in ordinary space...
  1080. Abstract vector spacesVectors can be added, subtracted and  scaled.
  1081. Dimension of a vector space:  The number of its independent generators.
  1082. Subspaces.  Intersection.  Sum.  Direct sums of supplementary subspaces.
  1083. Linear maps  between vector spaces respect addition and scaling.
  1084. Quotient of two vector spacesHyperplanes  have  codimension  1.
  1085. Fundamental theorem of linear algebra  and  rank theorem.
  1086. Normed vector spaces.  The fundamental properties of a  norm.
  1087. Inner-product spaces  over the field of complex numbers.
  1088. Dual space:  The set of all [continuous] linear functions with scalar values.
  1089. Lebesgue spacesSequence spaces  exemplify more general types.
  1090. Tensors:  Multilinear functions of vectors and covectors with scalar values.
  1091. Graded linear spaces  are direct sums of homogeneous spaces.
  1092. Algebra:  A vector space with a scalable and distributive internal product.
  1093. Lie algebra:  Anticommutative algebra obeying  Jacobi's identity.
  1094. Jordan algebra:  Commutative and  alternative  algebras  (Jordan, 1933).
  1095. Albert algebra:  Exceptional 27-dimensional Jordan-algebra  (Albert, 1934).
  1096. Clifford algebra:  Unital associative algebra endowed with a quadratic form.
  1097. Dual numbers  with a second component squaring to zero  (Clifford, 1873).
  1098. Spacetime algebra:  Cl(1,3) is the Clifford algebra with Minkowski metric.
  1099. Things that are not vectorial  because they're not defined  intrinsically.
  1100. David Hestenes proposed  geometric calculus  as a denotational unification.

    Modules  (over a ring)

  1101. Modules  are vectorial structures over a  ring of scalars  (instead of a  field).
  1102. Free modules  have a basis similar to that of vector spaces.
  1103. Injective modules.  The rationals form an injective module over the integers.
  1104. Projective modules.  Due to  Eilenberg  &  Cartan  (1956).
  1105. Flat modules.  Devised by  Jean-Pierre Serre  in 1956.

    Tensors and Tensor Calculus

  1106. Definition of a tensor.
  1107. Metric spaces:  Linking contravariant and covariant representations.
  1108. Gradient:  Tensor of rank 1 in covariant form.

    Convex Geometry

  1109. Convex sets  in a  real  vector space.
  1110. Real-valued convex functions  of a vectorial variable.
  1111. Uniformly convex spaces.
  1112. Aspect ratio:  The  length  divided by the  height  (i.e., the smallest width).
  1113. A norm is characterized  by a closed convex body, symmetric about  0.
  1114. Convex hullConv (S)  is the smallest convex set containing the set  S.
  1115. Closed halfspaces  generate all  closed convex sets  by intersection.
  1116. Polar of a  closed  convex set.  Dot-product duality among convex bodies.
  1117. Separating hyperplane  (in the loose sense)  between disjoint convex sets.
  1118. A compact convex  can be  strictly  separated from a disjoint closed convex.
  1119. Two disjoint open convexes  are separated by a nonintersecting hyperplane.

    Functional Analysis

  1120. Functionals  assign scalar values to  some  functions over an infinite set I.
  1121. Topological vector spaces.  Banach spaces are  normed  and  complete.
  1122. Eduard Helluy (1912):  The space  C[a,b]  (continuous functions over [a,b]).
  1123. Sublinear functionals  are merely  subadditive  and  positively homogeneous.
  1124. Hahn-Banach extension theorem.  Extending a dominated linear functional.
  1125. Hahn-Banach separation theorem.  A different view of the same result.
  1126. Generalization of Hahn-Banach  to complex or quaternionic linear spaces.
  1127. The two Baire category theorems   (1899).
  1128. Uniform boundedness principle.  The Banach-Steinhaus theorem.
  1129. Open mapping theorem.  The Banach-Schauder theorem.
  1130. Weak convergence  and  weak* convergence.
  1131. Banach-Alaoglu theorem  (1940).
  1132. Krein-Milman theorem:  Retrieving a compact convex set from its extremes.
  1133. Nuclear spaces  cover practical cases besides Banach spaces.
  1134. Nuclear operators.
  1135. Compact operators.
  1136. Schauder basis.

    Ring of p-adic Integers,  Field of p-adic Numbers

  1137. The ring of p-adic integers.  Objects with infinitely many radix-p digits.
  1138. Polyadic integers:  Greek naming of p-adic integers.
  1139. What if p isn't prime?  Dealing with  zero-divisors.
  1140. Decadic integers:  The strange realm of 10-adic integers  (composite radix).
  1141. Decadic puzzle:  A tribute to the columnist  J.A.H. Hunter  (1902-1986).
  1142. The field of p-adic numbersQuotient field  of the ring of p-adic integers.
  1143. Dividing two p-adic numbers  looks like  long division,  only backwards...
  1144. Overbar notation,  for p-adic and rational numbers alike.
  1145. The p-adic metric  can be used to define p-adic numbers analytically.
  1146. The reciprocal of a p-adic number  computed by successive approximations.
  1147. Ratios of rational integers have two representations:  g-adic and radix-g.
  1148. Solving algebraic equations  in p-adic integers.
  1149. Q-linear maps  between  R  and  Qp  are discontinuous at every point.
  1150. Hasse's local-global principle.  Established for the quadratic case in 1920.
  1151. Rotating digit patterns  (in base g)  may double the corresponding values.
  1152. Rotating digits one place to the left divides some integers by k.

    Nim Arithmetic

  1153. Ordinary fractions  added with Nim rules.
  1154. Multiplicatiion of ordinary fractions  added with Nim rules.
  1155. Nim square-root.

    Pseudoprimes

  1156. Pseudoprimes  to base aPoulet numbers  are pseudoprimes to base 2.
  1157. Weak pseudoprimes  to base a :  Composite integers  n  dividing  (an-a).
  1158. Counting the bases  to which a given composite number is a pseudoprime.
  1159. Strong pseudoprimes to base a  are less common than Euler pseudoprimes.
  1160. The witnesses of a composite number:  At least  75%  of nontrivial bases.
  1161. Rabin-Miller Test:  An efficient and trustworthy  stochastic  primality test.
  1162. The product of 3 primes  is a pseudoprime when all  pairwise  products are.
  1163. Super-pseudoprimesAll  their composite divisors are pseudoprimes.
  1164. Maximal super-pseudoprimes  have no super-pseudoprime multiples.
  1165. Wieferich primes  are scarce but there ought to be infinitely many of them.

    Factoring into Primes

  1166. Jevons Number.  Factoring  8616460799  is now an  easy  task.
  1167. Challenges  help tell  special-purpose  and  general-purpose  methods apart.
  1168. Special cases  of  a priori  factorizations are helpful to number theorists.
  1169. Trial division  may be used to weed out the small prime factors of a number.
  1170. Ruling out factors  can speed up trial divison in special cases.
  1171. Pocklington's lemma:  Conditions imposing the form of unknown factors.
  1172. Recursively-defined sequences  (over a  finite  set)  are  ultimately periodic.
  1173. Pollard's rho factoring method  is based on ultimately periodic sequences.
  1174. Pollard's p-1 Method  finds prime factors  p  for which  p-1  is  smooth.
  1175. Williams' p+1 Method  is based on the properties of Lucas sequences.
  1176. Lenstra's Elliptic Curve Method  generalizes Pollard's p-1 approach.
  1177. Dixon's method:  Combine small square residues into a solution of   x 2 º y 2
  1178. Shors's algorithm  would work in polynomial time on a  quantum computer.

    Quadratic Reciprocity

  1179. Motivation:  On the prime factors of some quadratic forms...
  1180. Quadratic residues:  Half of the nonzero residues modulo an odd prime  p.
  1181. Euler's criterion:  A quadratic residue raised to the power of  (p-1)/2  is 1.
  1182. The Legendre symbol  (a|p)  extends to values of  p  besides  odd primes.
  1183. The law of quadratic reciprocity  states a simple but surprising fact.
  1184. Gauss' Lemma  expresses a  Legendre symbol  as a product of many  signs.
  1185. Eisenstein's Lemma:  A variation of  Gauss's lemma  allows a simpler proof.
  1186. One of many proofs of the  law of quadratic reciprocity.
  1187. Artin's Reciprocity.

    Continued Fractions  (and related topics)

  1188. What is a continued fraction?  Example:  The expansion of p.
  1189. The convergents of a number  are its best rational approximations.
  1190. Large partial quotients  allow very precise approximations.
  1191. Regular patterns  in the continued fractions of some irrational numbers.
  1192. In almost all cases,  partial quotients are ≥ k with probability  lg(1+1/k).
  1193. Elementary operations on continued fractions.
  1194. The Baire space:  Continued fraction expansions of  irrationals  in  [0,1].
  1195. Expanding functions as continued fractions.
  1196. Expanding functions as continued exponentials.
  1197. Engel expansions  of positive numbers are nondecreasing integer sequences.
  1198. Pierce expansions of numbers from 0 to 1.  Strictly  increasing sequences.
  1199. Continued fractions in the complex realm.  Algorithm of  Asmus L. Schmidt.

    Recreational Mathematics

  1200. Counterfeit Coin:  In 3 weighings, find an odd object among 12, 13 or 14.
  1201. Counterfeit Penny Problem:  Find an odd object in the fewest weighings.
  1202. Seven-Eleven:  Four prices with a sum and product both equal to 7.11.
  1203. Equating a right angle and an obtuse angle,  with a clever  false  proof.
  1204. Choosing a raise:  Trust common sense, beware of  fallacious accounting.
  1205. 3 men pay $30 for a $25 hotel room,  the bellhop keeps $2...  Is $1 missing?
  1206. Chameleons:  A situation is unreachable because of an invariant quantity.
  1207. Sam Loyd's 14-15 puzzle  also involves an invariant quantity (and 2 orbits).
  1208. Einstein's riddle:  5 distinct colors, nationalities, drinks, smokes and pets.
  1209. Numbering n pages  of a book takes this many digits (formula).
  1210. The Ferry Boat Problem  (by Sam Loyd):  To be or not to be  ingenious ?
  1211. Hat overboard !   What's the speed of the river?
  1212. All digits once and only once:  48 possible sums (or 22 products).
  1213. 2-people bridge crossed by 4 people (U2).  Four paces, one flashlight!
  1214. Managing supplies  to travel 6 days while carrying enough for only 4 days.
  1215. Go south, east, north  and you're back...  not necessarily to the North Pole!
  1216. Icosapolis:  Put 1 to 20 in a 5 by 4 grid so neighbors differ by at least 4.
  1217. Unusual mathematical boast  for people born in 1806, 1892, or 1980.
  1218. Puzzles for extra credit:  From Chinese remainders to bookworms.
  1219. Simple geometrical dissection:  A proof of the Pythagorean theorem.
  1220. Early bird  saves time by walking to meet incoming chauffeur.
  1221. Sharing a meal:  A man has 2 loaves, the other has 3, a stranger has 5 coins.
  1222. Fork in the road:  Find the way to Heaven by asking only one question.
  1223. Proverbial Numbers:  Words commonly associated with some numbers.
  1224. Riddles:  The  Riddle of the Sphinx  and other classics, old and new.

    Trick Questions and Lateral Thinking

  1225. Crossing the Panama Canal  east to west to reach the Pacific Ocean.

    The Mathematical Games of Martin Gardner

  1226. Martin Gardner (1914-2010)  described himself as "strictly a journalist".
  1227. FlexagonsHexaflexagons  were popularized by Martin Gardner in 1956.
  1228. Polyominoes:  The 12 pentominoes and other tiles invented by  Sol Golomb.
  1229. Soma:  7 nonconvex solids consisting of  3 or 4  cubes make a larger cube.
  1230. Tessellations by convex pentagons.  The contributions of  Marjorie Rice.
  1231. Kites and Darts.  The  aperiodic  tilings of Roger Penrose.
  1232. Ambigrams:  Calligraphic spellings which change when rotated or flipped.
  1233. The Game of Life.  John Conway's  endearing  cellular automaton  (1970).
  1234. Rubik's Cube:  Ernõ Rubik (1974)  Singmaster (1979)  Gardner (1981).
  1235. It's impossible to tie a knot  without letting go of the ends of the string.
  1236. On the limited knowledge of Man.  An Indian legend...

    Mathematical "Magic" Tricks

  1237. 1089:  Subtract a 3-digit number and its reverse, then...
  1238. Multiples of Nine:  A secret symbol is revealed.
  1239. Casting Out Nines:  A missing digit is revealed.
  1240. Triple threat  mind reading.
  1241. Mass media mentalism  by  David Copperfield  (1992).
  1242. Grey Elephants in Denmark:  Classroom  mental magic.
  1243. Fitch Cheney's 5-card trick:  4 cards tell the fifth one.
  1244. Generalizing the 5-card trick and  Devil's Poker...
     border
     border
     border
    Clubs Hearts Spades Diamonds
  1245. Kruskal's Count.
  1246. Paths to God.
  1247. Stacked Deck.
  1248. Enigma Card Trick.
  1249. Magic Age Cards.
  1250. Ternary Cards.
  1251. Magical 21  (or 27).
  1252. The Final 3  are the chosen cards.
  1253. Boolean Magic.
  1254. Perfect Faro Shuffles.
  1255. Relocate the top card  to any given position using at most 7 faro shuffles.
  1256. Equal Numbers of  Heads !
  1257. Gilbreath principle:  Predictability survives a riffle-shuffle  (1958, 1966).
  1258. Divination by counting.  A self-working trick by  Paul A. Lelikis  (c. 1970).
  1259. Last card:  Tell the last card after being shown all the others.

    Illusions and Deceit

  1260. Deceit and lying.
  1261. Misdirection.
  1262. Find the Lady.
  1263. Cups and balls.  One of the most ancient tricks.
  1264. Chop cup.  Invented by "Chop-Chop" Wheatley in 1954.
  1265. Invisible Thread Reel  (ITR)  by  James George  (1992).
  1266. Force and Reveal:  A whole class of magic tricks.
  1267. Bill Simon's Prophecy Move  (1952).

    Mathematical Games (Strategies)

  1268. Dots and Boxes:  The "Boxer's Puzzle" position of Sam Loyd.
  1269. The Game of Nim:  Remove items from one of several rows. Don't play last.
  1270. Sprague-Grundy numbers  are defined for all positions in impartial games.
  1271. Moore's Nim:  Remove something from at most (b-1) rows.  Play last.
  1272. Normal Kayles:  Knocking down a pin or two adjacent pins may split a row.
  1273. Grundy's Game:  Split a row into two unequal rows, if at all possible.
  1274. Wythoff's Game:  Take either from one heap or equally from both heaps.

    The Noble Game of Chess

  1275. Origins of Chess:  Chaturanga (India) & Shatranj (Persia).  7th century.
  1276. Chess boards.  Tables,  boards and mats.
  1277. Chess men.  Styles and sizes of chess pieces.  Weighted or magnetized.
  1278. Wood and other materials  for chessmen and chessboards.
  1279. Time controls.  Use of modern chess clocks for tournament-like play.
  1280. Chess bag  to hold full-sized chessmen, a clock and a rolled-up mat.
  1281. Chess notation.  Squares:  a1 to h8.  Pieces:  K, Q, R, B and N.
  1282. Openings:  Structured list of common opening lines  (names & links).
  1283. Combinatorics of chess.
  1284. Single-byte encoding of most half-moves in chess,  with rare extra byte.
  1285. Systems of play:  Desired configurations of several pieces.
  1286. Chess maxims:  Guiding principles in the form of Proverbs.
  1287. Textbook endgames:  Foolproof recipes for some well-known endgames.
  1288. Nalimov Tables:  Perfect computerized analysis of endgame situations.
  1289. Evaluation function:  Estimating a quiescent position statically.
  1290. Minimax search tree:  The basic paradigm for analyzing two-player games.
  1291. Alpha-beta pruning.  In a minimax search, some alternatives can be ignored.
  1292. Hash tables.  How to avoid analyzing the same position more than once.
  1293. Shortest chess games.  Checkmates occurring during the opening moves.
  1294. Mate in N moves..  The quintessential type of chess puzzles.
  1295. Traxler's Counterattack.  Analyzing a  wild  strategy against the  fried-liver.
  1296. Miniature games,  including the  Immortal Game  of 23 moves.
  1297. Classic traps:  Fishing pole, etc.
  1298. Elo ratings:  Idealized probabilities and actual frequencies.
  1299. Odds Chess:  The old-fashioned handicapping system.
  1300. Over-the-board chess titles  from FIDE or national federations.
  1301. Leading chess centers  and famous chess venues,  throughtout History.
  1302. World champions.  Historical dominance and formal championships.
  1303. Glossary  of common chess terms,  classified by topic.

    The Ancient Game of Go

  1304. A brief history of Go.
  1305. The board  (standard goban).  361 intersections of lines in a 19 by 19 grid.
  1306. 361 stones.  181  black pieces and  180  white ones  (usually lenticular).
  1307. Go bowls (gosu).  Japanese wooden bowls.  Baskets from China.
    Rules of the Game of Go :
  1308. Komi:  Points received by  White  as compensation for starting  second.
  1309. Score   =   (surrounded territory)  +  (captured stones)  +  komi.
  1310. Liberty:  A  chain  of stones is captured when all its  liberties  vanish.
  1311. Rules of ko:  Japanese and Chinese rules differ in the rare case of  triple ko.
  1312. Playing Go on unusual boards.  Big or small,  rectangular or not...  5 by 5 goban
  1313. Combinatorics of Go.  Enumerating legal Go configurations.
  1314. Nalimov tables.  How  Go  has been  solved  for small grids.
    Playing Go.  Concepts, Tactics and Strategy :
  1315. Opening moves  (fuseki).  What to play first  (and why).
  1316. Mistakes to avoid.  What not to do and why not to do it.
  1317. Shapes:  Some localized patterns which skilled players are all familiar with.
  1318. Ladders and loose ladders.  Repeatedly prevent increase in opponent's  air.
  1319. Nets.  Loose limits which make captures inescapable.  Elementary reading.
  1320. Snapback.  A sacrifice may allow a greater capture in return.
  1321. Eyes and eye-shapes  are the keys to life-and-death problems.
  1322. Seki.  Shared life.  Configurations that would backfire if you touch them.
  1323. Tesuji.  Finding key moves.
  1324. Joseki.  The Go term for a standard sequence of moves worth memorizing.
  1325. Framework  (moyo)  to consolidate and/or defend against  invasions.
  1326. Invasions.  Challenging the opponent's claim to a territory.
  1327. Endgame.  Squeezing the most of the situation when the end is near.
    Go Players and the World of Go :
  1328. Kyu  (k)  &  dan  (d).  Pro dan or  ping  (p).  Pecking order in Go.
  1329. Competitions:  Amateur and professional tournaments.
  1330. Championships and champions:  Past and present stars of the  Go  world.
  1331. Machines that play Go.  In March 2016,  AlphaGo  beat  Lee Sedol,  9p.
  1332. Go jargon:  A short glossary of  Go  words indispensable in English.

    The Royal Game of Ur

  1333. 4500-year history  of the 20-square race game and its  rosettes.
  1334. Normal route and short lap:  The two variants of the basic rules.
  1335. Complex variants:  Pieces are flipped for the second part of their routes.
  1336. All variants ever played  and then some.  Classification and naming.
  1337. Number of positions  with  n  pieces per player.
  1338. Traditional tetrahedral dice.  Using  3  or  4  dice changes everything.
  1339. Nalimov table  for the single-lap  Royal Game of Ur  (7 pieces per player).
  1340. Northwest Corner  devised new rules for the Mesopotamian equipment.

    Ramsey Theory

  1341. The pigeonhole principle:  What's entailed by fewer holes than pigeons.
  1342. Among 70 distinct integers between 1 and 200,  two must differ by 4, 5 or 9.
  1343. n+1 of the first 2n integers  always include two which are coprime.
  1344. Largest sets of small numbers with at most  k  pairwise coprime integers.
  1345. Ramsey's Theorem:  Monochromatic complete subgraphs of a large graph.
  1346. Infinite alignment among infinitely many lattice points  in the plane?  Nope.
  1347. Infinite alignment in a lattice sequence with bounded gaps?  Almost...
  1348. Large alignments in a lattice sequence with bounded gaps.  Yeah!
  1349. Van der Waerden's theorem:  Long monochromatic arithmetic progressions.
  1350. Happy-Ending problem:  Unavoidable  convex n-gons  among  m  points.
  1351. Unavoidable monochromatic Pythagorean triples  with 2 colors in  1-7825.

    Computer Science:  Computability and Undecidability.

  1352. Finite-state automata.  The simplest type of computing machines.
  1353. Deterministic and nondeterministic machines
  1354. Pushdown automata  (PDA)  recognize  context-free languages  (CFL).
  1355. Two-way deterministic pushdown automata  simulated in  linear time.
  1356. Turing-machines  run a finite program on an infinite read-write tape.
  1357. Universal Turing machine  executes a program stored on its data tape.
  1358. Almost all decision problems are not computable.  The sad truth.
  1359. The halting problem.  Fundamental limitation of computers.
  1360. The Ackermann function  is total computable but not primitive recursive.
  1361. The busy-beaver function  (Radó's Sigma function)  isn't computable.
  1362. Church-Turing Thesis:  If it can be done,  a Turing machine can do it.
  1363. Turmites.  Langton's Ant and other two-dimensional Turing machines.
  1364. Cellular automata  (1D or 2D)  can be  Turing-complete.

    Subreal Numbers:  The field of computable numbers.

  1365. Subreal numbers  are computed by  convergent  two-tape Turing machines.
  1366. Subreal numbers are countable  because Turing machines are.
  1367. The set of subreal numbers is not complete.
  1368. Equality of subreal numbers  isn't computable by any general procedure.

    Irrational Numbers.

  1369. Rational numbers  are quotients of two integers.
  1370. Some irrational numbers:  Surds.  Logarithmic ratios of  coprime  integers.
  1371. Constructible numbers  can be constructed with  straightedge and compass.
  1372. Algebraic numbers  are roots of polynomials with integer coefficients.
  1373. Subreal numbers:  Only  countably many  real numbers can be computed.
  1374. Transcendental numbersAlmost all  of them aren't even  computable.
  1375. Irrationality measure
  1376. Louville's (transcendental) numbers  have infinite  irrationality measure.
  1377. Pickover's  Flint Hills  series.  Governed by the  irrationality measure  of  p.

    Algorithms

  1378. Stable marriages:  Two people shouldn't prefer each other to their spouses.
  1379. Ford-Fulkerson algorithm.  Best network flow from source to sink (1956).
  1380. Heap priority queues  allow sorting in  O( n Log n )  worst time  (1964).
  1381. Alphabetic sorting  is often  not  performed by pairwise comparisons.
  1382. Radix sorting:  Sorting n integers in  linear time  with radix-n numeration.
  1383. Best path in a network:  Dijkstra's algorithm and Bellman-Ford algorithm.
  1384. " A* " best-first search  uses a heuristical underestimate of the cost to a goal.
  1385. Alpha-Beta Prunning Algorithm:  Finding a minimax value in optimal time.
  1386. String-matching in sublinear time.  The Knuth-Morris-Pratt algorithm.
  1387. Union-findLinked partitions  allow component merging and fast retrievals.
  1388. Dynamic programming.  Store partial results to avoid duplication of efforts.
  1389. Minimum spanning tree.  Least costly set of edges retaining connectivity.
  1390. Linear programming in polynomial time.  Foregoing the  simplex algorithm.

    Miscellaneous

  1391. Ford circles:  Kissing circles touching the real line at rational points.
  1392. Farey series:  The rationals from 0 to 1, with a bounded denominator.
  1393. The Stern-Brocot tree  features every positive rational once and only once.
  1394. Eisenstein-Stern sequence  (Calkin-Wilf tree)  enumerates the rationals too!
  1395. Any positive rational  is a unique ratio of two consecutive Stern numbers.
  1396. Pick's formula gives the area of a lattice polygon by counting lattice points.

    History, Nomenclature, Vocabulary, etc.

    History :
  1397. Earliest mathematics on record.  Before Thales was Euphorbus...
  1398. Indian numeration became a positional system with the introduction of zero.
  1399. Roman numerals are awkward for larger numbers.   [ Unabridged version ]
  1400. The invention of logarithms:  Napier, Bürgi, Briggs, St-Vincent, Euler.
  1401. The earliest mechanical calculators.  W. Shickard (1623)  &  Pascal (1642).
  1402. The Fahrenheit Scale:  100°F  was meant to be the normal body temperature.
  1403. The revolutionary innovations  which brought about new civilizations.
    Nomenclature & Etymology :
  1404. The origin of the word  algebra,  and also that of  algorithm.
  1405. The name of the avoirdupois system  is from a  pristine  form of French.
  1406. Long Division:  Cultural differences in long division layouts.
  1407. Is a parallelogram a trapezoid?  In a mathematical context,  yes  it is...
  1408. Naming polygons.  Greek only please; use  hendecagon  not  "undecagon".
  1409. Chemical nomenclature:  Sequential names are  systematic  or traditional.
  1410. Fractional prefixeshemi (1/2) sesqui (3/2)  hemipenta (5/2)  hemisesqui (3/4).
    • Matches, phosphorus, and  phosphorus sesquisulphide.
  1411. Zillion. Naming large numbers.
  1412. Zillionplex. Naming huge numbers.

    Style and Usage

  1413. Abbreviations:  Abbreviations of scholarly Latin expressions.
  1414. "Resp."  is a  mathematical symbol  whose syntax isn't that of  respectively.
  1415. Typography of long numbers.
  1416. Intervals  denoted with square brackets (outward for an excluded extremity).
  1417. Dates  in the simplest ISO 8601 form  (with  customary  time stamps or not).
  1418. The names of operands  in common numerical operations.
  1419. Spoken numbers.
  1420. Pronouncing mathematical expressions,  like native English speakers do.
  1421. PEMDAS:  A mnemonic for a rule that  should not  be taught.
  1422. Physical units:  Their products and their ratios.

    Setting the Record Straight

  1423. The heliocentric system  was known two millenia before Copernicus.
  1424. The assistants of Galileo  and the mythical experiment at the  Tower of Pisa.
  1425. Switching calendars:  Newton was not born the year Galileo died.
  1426. The Lorenz Gauge is due to Ludwig Lorenz (1829-1891) not H.A. Lorentz.
  1427. Special Relativity was first formulated by  Henri Poincaré  (1854-1912).
  1428. Radioactivity was discovered in 1857,  by  Abel Niépce de Saint-Victor.
  1429. The Fletcher-Millikan "oil-drop" experiment isn't entirely due to Millikan.
  1430. Collected errata  about customary physical units of measurement.
  1431. Portrait of Legendre:  The  mathematician  was confused with a politician.
  1432. Incorrect depictions of Ambroise Paré  don't match one authentic portrait.
  1433. The iconography used for Apollonius of Perga  was meant for another man.
  1434. The  missing portrait  of Robert Hooke.  Did Newton really destroy it?
  1435. Lisa Jardine's enduring blunder  hinders the depictions of  two  scientists.
  1436. Tribulations of a great portrait  of  Jan Baptist Van Helmont  (1577-1644).
  1437. Dubious quotations:  Who  really  said that?

    Ancient Knowledge

  1438. Exact sexagesimal ratios  in Pythagorean triples.  Set in clay  (c. 1800 BC).
  1439. Extant mathematical papyri  betray the Egyptian taste for  recreational mathematics.
  1440. Classical geometry  describes an  homogeneous  space indifferent to scale.
  1441. Anthyphairesis  is more elementary than factorization into primes.
  1442. Obliquity of the ecliptic  in the time of Eratosthenes (276-194 BC).
  1443. Vertical wells at Syene are completely sunlit only once a year, aren't they?
  1444. Eratosthenes sizes up the Earth:  700 stadia per degree of latitude.
  1445. Knowing the Earth is round.  Astronomical and terrestrial obsrvations.
  1446. The distance to the Moon  was computed by  Aristarchus  and  Hipparchus.
  1447. Latitude and longitude:  The spherical grid of meridians and parallels.
  1448. Itinerary units:  The  land league  and the  nautical league.
  1449. Amber, compass and lightning:  Glimpses of electricity and magnetism.
  1450. The Antikythera Mechanism  (c. 87 BC)  is the oldest known  orrery.
  1451. Music theory:  Design of musical instruments and study of  harmony.
  1452. The cult of Pythagoras.

    The Scientific Method

  1453. On the nature of physical laws:  The example of gravitation.
  1454. Controlled Experiment:  A concept attributed to Sir Francis Bacon (1590).
  1455. History of the Scientific Method.
  1456. Distinguishing between Science and  Pseudoscience.
  1457. Faster-than-light neutrinos?  How the media butchers the  scientific method.

    The Arrow of Time

  1458. What is time?  Why don't we remember the future?
  1459. The beginning of time.  Was there anything before that?
  1460. Time machines:  Unavoidable microscopically,  impossible macroscopically.
  1461. Determinism  precludes the  arrow of time.
  1462. GPS time  is now universally available, fairly inexpensively.
  1463. Cosmic time  is the time kept by a free-falling clock at rest in its local CMB.

    Physics

  1464. Introduction:  Geometry, statics, kinematics, dynamics and beyond...
  1465. The notion of force.  Statics,  mechanical advantage  and  virtual work.
  1466. Speed.  Allowing the division of  unlike  quantities  (distance and time).
  1467. Mean-speed theorem.  The distance traveled at constant acceleration.
  1468. The timing experiments of Galileo:  From the  pendulum  to falling bodies.
  1469. The true period of a pendulum  is proportional to   1 / agm ( 1 , cos A/2 ).
  1470. The  parabola  of a cannonball,  compared to Aristotle's  triangular  path.
  1471. Conservation of momentum  is key to  Newton's three laws of motion.
  1472. The  work done  to a point-mass  equals the change in its  kinetic energy.
  1473. Relativistic work done  and the corresponding change in  relativistic energy.
  1474. Relativistic thermodynamics:  A point-mass endowed with internal heat.
  1475. Spacecraft speeds up upon reentry  into the upper atmosphere.
  1476. Lewis Carroll's monkey  climbs a rope over a pulley, with a counterweight.
  1477. Two-ball drop  can make one ball bounce up to 9 times the dropping height.
  1478. Normal acceleration  =  Square of speed divided by the radius of curvature.
  1479. Roller-coasters  must rise more than half a radius above any  loop-the-loop.
  1480. Conical pendulum:  A hanging bob whose trajectory is an horizontal circle.
  1481. Conical pendulum constrained by a hemisphere:  The string tension.
  1482. Ball in a BowlPure rolling  increases the period of oscillation by 18.3%.
  1483. Hooke's LawSimple harmonic motion  of a mass suspended to a spring.
  1484. Speed of an electron  estimated with the Bohr model of the atom.
  1485. Hardest Stuff:  Diamond is  no longer  the hardest known material.
  1486. Hardness  is an elusive  nonelastic  property, distinct from  stiffness.
  1487. Hot summers, hot equator!  The distance to the Sun is not the explanation.
  1488. Kelvin's Thunderstorm:  Using falling water drops to generate high voltages.
  1489. The Coriolis effect:  A dropped object falls to the east of the plumb line.
  1490. Terminal velocity  of an object falling in the air.
  1491. Angular momentum and torque.  Spin and orbital angular momentum.
  1492. Ad hoc  conserved quantities  unrelated to energy or momenta.

    Motion of Rigid Bodies  (Classical Mechanics)

  1493. Rotation vector  of a moving rigid body (and/or "frame of reference").
  1494. Angular momentum  equals  moment of inertia  times  angular velocity.
  1495. Kinetic energy of a solid:  Sum of its translational and rotational energies.
  1496. Moments about a point or a plane  are convenient mathematical fictions.
  1497. Perpendicular Axis Theorem:  Axis of rotation perpendicular to a  lamina.
  1498. The Parallel Axis Theorem:  Moment of inertia about an off-center axis.
  1499. Moment of inertia of a thick plate,  derived from the  parallel axis theorem.
  1500. Moment of inertia of a right cone  or  conical frustum.
  1501. Momenta of homogeneous bodies.  List of common examples.
  1502. Rigid pendulum  moving under its own weight about a fixed horizontal axis.
  1503. Reversible pendulum.  The same period around two distinct axes.
  1504. Moment of inertia of a spherical distribution  or an  homogeneous ellipsoid.
  1505. Moment of inertia of the Earth  is equal to  0.330695 M a 2.
  1506. Second dynamic form factor  (J2)  of a mass distribution.
  1507. Axial precession:  Reaction of a gyroscope to a torque across its axis.
  1508. Elbow in free spaceMuscle  acting on two solids around a common axis.  Isaac Newton 
 1643-1727

    Newtonian Gravity

  1509. All physical theories  have a limited range of validity.
  1510. Gravity vs. Electrostatics:  Straight comparisons.
  1511. Binet's formulas:  Deriving Kepler's laws for two orbiting bodies.
  1512. The celerity hodograph  of a body in elliptical orbit is a  perfect circle !
  1513. Airy weighs the Earth  by timing a pendulum deep in a mine.
  1514. Rigid equilateral triangle  formed by three gravitating bodies.
  1515. The five Lagrange points  of two gravitating bodies in circular orbit.
  1516. Geosynchronous Orbit:  Semimajor radius of 36000 km around the Earth.
  1517. Hohmann transfer orbit:  From one circular orbit to another in  two kicks.
  1518. The gravitational self-energy  of a ball  (mass M, radius R)  is  -1.2 GM2/R
  1519. Orbital Mechanics.  Description of orbital motion using  orbital elements.
  1520. Tides on Earth:  Dominant rôle of the Moon.  Lesser rôle of the Sun.
  1521. Attraction between rigid bodies,  not necessarily  spherically symmetric.
  1522. Asteroid 99942 Apophis:  Near-Earth objects and  gravitational keyholes.
  1523. Mass distributions of galaxies.  Evidence for the existence of  dark matter.

    Friction & Dissipative Mechanics

  1524. Coefficients of friction:  The static coefficent exceeds the kinetic one.
  1525. Example  involving a nontrivial choice between static and kinetic regimes.
  1526. Minimum inclination of a ladder  leaning against a frictionless wall.
  1527. Spinning cylinder on an horizontal plane:  The skidding before pure roll.
  1528. Walter Lewin's Effect:  Drawing a dotted line on a blackboard.
  1529. Coefficient of restitution  (e)  Ratio of initial to final closing speed.
  1530. Leonardo da Vinci's  Friction Arch :  Straight planks, no nails...

    The Physics of Billiards  (Classical Mechanics)

  1531. Billiards and pool tables:  Nominal & quoted size, play area and clearance.
  1532. Slate slab:  The playing surface is cloth-covered rock.
  1533. Billiard balls:  Phenolic resin binding a dense powder has replaced ivory.
  1534. Cue sticks:  Butts and shafts.  Basic construction.  Anti-squirt technology.
  1535. The contents of a cue case  reflect the player's basic choices.
  1536. Cue tips.  Leather and phenolic tips.
  1537. Two types of billiard chalk  to reduce hand friction or increase tip friction.
  1538. Silicon spray  can be used by trickshot artists to reduce ball-cloth friction.
  1539. Normal trajectory of a billiard ball:  A parabola followed by a straight line.
  1540. Making the cue ball stop  after hitting the object ball.
  1541. The stun path  ("tangent line").
  1542. The impossible 90° cut-shot  made possible with extreme english.
  1543. Squirt  between cue and cue ball with extreme English  (vertical spin axis).
  1544. Jump shots.  Legal and illegal ways to send the cue ball up in the air.

    Geometrical Optics

  1545. Concave mirrors  create enlarged virtual images of objects in front of them.
  1546. Thin-lens equation.  How the positions of an object and its image are tied.
  1547. Focusing distance:  The distance between an object and its image.
  1548. Hyperfocal distance.  Nearest in-focus objects when lens is set to infinity.
  1549. Matrix methods:  Transformations of a ray's inclination and radial distance.
  1550. A crystal ball  (index n and radius R)  has focal length  f = R / (2n-2).
  1551. Lens-maker's formula:  Focal lens as a function of signed curvatures.
  1552. Thin-lenses are  rectilinear:  The image of a straight line is straight.
  1553. Galileo's refractor (1609).  Based on a design by  Hans Lippershey  (1608).
  1554. Reflecting telescopes:  The simplest design is due to  Isaac Newton  (1668).
  1555. The compound microscope:  Combining an  object lens  and an  eyepiece.
  1556. Distortion:  When the image of a straight line  ain't  straight.
  1557. The image of a tilted plane is a plane, which it intersects on the  lens plane.
  1558. Gullstrand's formula:  Power of two lenses separated by a distance.
  1559. Light falls off  as  cosq  (where  q =  angular distance to the image center).
  1560. Retrofocus  allows a wide-angle image to be produced by a remote lens.
  1561. Numerical aperture  doesn't depend on the refraction index.
  1562. Angular resolution  varies as the wavelength and inversely as the diameter.
  1563. Opposition effect  increases albedo by eliminating micro-shadows.
  1564. Honeycomb grids  attenuate drastically the peripheral parts of a light beam.
  1565. Schlieren imaging  shows how shockwaves disturb the refractive index  (n).

    Light and Color Vision

  1566. A brief history of light:  From Empedocles to modern times.
  1567. Luminous units of measurement:  Light as the human eye sees it.
  1568. Monochromacy.  In dim light, humans see in black-and-white.
  1569. Dichromacy.  8% of men and 0.64% of women are color-blind.
  1570. Trichromacy.  Normal photopic vison  (bright-light).  3 primary colors.
  1571. Tetrachromacy.  Mysteries of the fourth primary color.
  1572. Aphakia.  The eye of  Claude Monet  was sensitive to UV light.
  1573. Light polarization  is easy to demonstrate with sheet polarizers  (sunglasses).

    Technical Aspects of Basic Photography

  1574. Technical jargon:  Different manufacturers promote different terms.
  1575. Pinhole camera:  The simplest camera doesn't even have a lens.
  1576. Simple lens.  Focal length.  Aperture.  f-stops.
  1577. Microphotography.  Using a lens backward in front of another.
  1578. Depth of field.  Circle of confusion.  Hyperfocal distance.
  1579. Bokeh:  The aspect of out-of-focus areas.
  1580. Defocus control (DC).  Enhancing the bokeh of either near or far regions.
  1581. Smooth transition focus.  Optical apodization provides perfect  bokeh.
  1582. Lens sharpness.  Center resolution, corner resolution.  Vignetting.
  1583. StabilizersImage stabilization (IS)  =  vibration reduction (VR).
  1584. Color-corrected lenses.  Color dispersion of various types of glass.
  1585. Zoom lens.  Adjustable focal length  (can be internal or not).
  1586. Focusing.  Manual focusing.  Focus detection.
  1587. Professional cameras.  Evolution toward ruggedness and full sensor size.
  1588. Autofocus:  Focusing motors attached to the lens or the camera.
  1589. Focus breathing.  Effective focal length may depend on focusing distance.
  1590. Macro darkening.  Effective aperture is lower in close-up photography.
  1591. ISO sensitivity  is directly derived from the old ASA & DIN standards.
  1592. Light-sensitive films:  Chemistry, sensitivity and grain size.
  1593. Electronic photocells.  Capturing an image one  pixel  at a time.
  1594. Signal to noise ratio  is limited by the  number  of photons per pixel.
  1595. Bayer filters  give color-vision to large arrays of photodiodes.
  1596. Digital image sensors.  Sizes, spatial resolution and color depth.
  1597. Crop factor:  43.2666153 mm  divided by the diagonal of the sensor.
  1598. Handheld shots:  Shutter speed should exceed equivalent focal length.
  1599. Spatial filters.  Lowpass filters or lack thereof.  ADC resolution loss.
  1600. Formats.  Digital encoding of still pictures:  raw, jpeg, etc.
  1601. Exposure.  Exposure index  (and corrections for long exposure).
  1602. Mounts:  The various ways of attaching a body to interchangeable lenses.
  1603. Screw-on filters  have a 0.75 mm pitch and a few standard diameters.
  1604. Neutral density filters.  Changing exposure at constant speed and aperture.
  1605. Photographing the Sun.  ISO 100,  1/4000 s,  f/32,  with an  ND1000 filter.
  1606. Cut filters:  Blocking parts of the IR, visible and/or UV spectra.
  1607. Color temperature.  Light sources and white balance.
  1608. Shadows on a sunny day.  How dark and how blue are they really?
  1609. Color conversion:  Converting one color temperature to another.
  1610. Flash photography.  Technology.  Guide number (GN) & duration control.

    Waves

  1611. Huygens' Principle.  A convenient fiction to describe wave propagation.
  1612. Diffraction  occurs when when a wave emanates from a bounded source.
  1613. Young's  double-slit  experiment  demonstrates the wavelike nature of light.
  1614. Celerity  is the speed with which  phase  propagates.
  1615. Standing waves  feature stationary nodes and antinodes.
  1616. Snell's Law  gives the angle of refraction (Thomas Harriot, July 1601).
  1617. Total internal reflection (TIR)  at incidences exceeding the  critical angle.
  1618. Birefringence.  Discovery of  polarization  (Erasmus Bartholinus, 1669).
  1619. Fresnel equations:  Reflected or refracted intensities of polarized light.
  1620. Brewster's angle  is the incidence which yields a 100% polarized reflection.
  1621. Stokes parameters:  A standard description of the  state of polarization.
  1622. Transverse wave on a rope:  (celerity) 2 = (tension) / (linear mass density).
  1623. Chladni patterns:  The lines formed by nodes in an oscillating  plate.
  1624. Wave inertia:  The idea behind the  Hemispherical Resonator Gyroscope.

    Colors & Dispersion

  1625. Dispersion relation:  Pulsatance vs. wave number; frequency vs. wavelength.
  1626. Empirical approximations  often give wavelength as a function of frequency.
  1627. Group velocity  is the traveling speed of a beat phenomenon.
  1628. Rayleigh scattering  makes the sky blue and sunsets red.
  1629. Index of refraction of water  for light of different colors.
  1630. A spherical drop  reflects light back (red up to 42.34° & violet up to 40.58°).
  1631. The  length  of a rainbow:  Mathematical digression.

    Infrared Transmissions   (of remote control codes  &  data)

  1632. Wavelength:  940 nm (319 THz) is the most common specification for IR.
  1633. Modulation:  38 kHz (38.4 kHz).  Also:  30, 33, 36, 36.7, 40, 56, 455 kHz.
  1634. Remote shutter release for cameras.  The simplest type of infrared control.
  1635. On/off patterns  to encode data bits and the start/stop of data frames.
  1636. Unexplained datasheet mysteries.  Why are Rohm's specs slightly off?
  1637. Discrete IR control codes  provide critical functions for automated control.
  1638. RECS-80:  An obsolete system, proposed by Philips in 1988.
  1639. RC-5 and RC-6.  Philips and the well-documented  European protocol.
  1640. NEC Protocol.  The Japanese format.
  1641. SIRC Protocol  by Sony.
  1642. RCA Protocol:  64 ms to send a 4-bit address and 8-bit data at 56 kHz.
  1643. HP 82240B:  The standard printer for HP scientific calculators, since 1989.
  1644. Philips Pronto universal remotes.  Pronto codes for learned commands.
  1645. Databases of IR codes:  Defending consumers  & creating flexibility.
  1646. Serial protocol:  2400 Bd, 1 start bit, 8 data bits, 1 stop bit, odd parity.
  1647. Resurrrecting 455 kHz modulation  to transmit at high-speed  (19200 Bd).

    Lasers :  From masers to laser beams

  1648. Stimulated emission  is crucial to blackbody equilibrium  (Einstein, 1916).
  1649. Bose-Einstein Statistics  is what explains stimulated emission of bosons.
  1650. Optical pumping  is the key to creating a  population inversion.
  1651. Population inversion :  When energetic states are abnormally abundant.
  1652. LASER Cavity.  Light Amplification by Stimulated Emission of Radiation.
  1653. Gaussian beam.  The shape of an ideal laser beam.
  1654. Tunable lasers.
  1655. Negative tenperature  of a laser.

    Analytical Mechanics  &  Classical Field Theory

  1656. Fermat's principle  (least time)  for light (c.1655) predates Newton.
  1657. Maupertuis principle  of  least action  (1744).
  1658. Virtual Work:  A substitute for Newton's laws that cancels constraint forces.
  1659. Phase SpacePhase  describes completely the state of a classical system.
  1660. Either velocities or momenta  are added to configuration to specify a  phase.
  1661. The Lagrangian  is a function of positions and velocities.
  1662. The Hamiltonian  depends on positions and momenta.
  1663. Poisson brackets:  An abstract synthetic view of analytical mechanics.
  1664. Liouville's theorem:  The Hamiltonian  phase volume  doesn't change.
  1665. Noether's theorem:  Conservation laws express the symmetries of physics.
  1666. Relativistic point-mass:  Lagrangian, Hamiltonian and free momentum.
  1667. Charge in a magnetic field:  The canonical momentum isn't the linear one.
  1668. Fokker lagrangian:  Lagrangien formulation of  general relativity  (1924).
  1669. Field theory:  Lagrangian function of a continuum of values and velocities.

    Electromagnetism  (Maxwell's Equations)

  1670. Clarifications:  Vector calculus (Heaviside) & microscopic view (Lorentz).
  1671. The vexing problem of units  is a thing of the past if you stick to SI units.
  1672. The Lorentz force  on a test particle defines the local electromagnetic fields.
  1673. Electrostatics (1785):  The study of the electric field due to static charges.
  1674. Electric capacity  is an electrostatic concept  (adequate at low frequencies).
  1675. Electrostatic multipoles:  The multipole expansion of an electrostatic field.
  1676. Birth of electromagnetism (1820):  Electric currents create magnetic fields.
  1677. Biot-Savart Law:  The  static  magnetic induction due to steady currents.
  1678. Magnetic scalar potential:  A  multivalued  static scalar field.
  1679. Magnetic monopoles do not exist :  A law stating a fact not yet disproved.
  1680. Ampère's law (1825):  The law of static electromagnetism.
  1681. Faraday's law (1831):  Electric circulation induced by magnetic flux change.
  1682. Self-induction  received by a circuit from the magnetic field it produces.
  1683. Ampère-Maxwell law:  Dynamic generalization (1861) of  Ampère's law.
  1684. Putting it all together:  Historical paths to Maxwell's  electromagnetism.
  1685. Maxwell's equations  unify electricity and magnetism dynamically  (1864).
  1686. Continuity equation:  Maxwell's equations imply  conservation of charge.
  1687. Waves:  Predicted by Faraday, Maxwell & FitzGerald.  Observed by Hertz.
  1688. Electromagnetic energy density  and the flux of the Poynting vector.
  1689. Planar electromagnetic waves:  The simplest type of electromagnetic waves.
  1690. Maxwell-Bartoli radiation pressure.  First detected by  P. Lebedev  in 1899.
  1691. Electromagnetic potentials  are postulated to obey the  Lorenz gauge.
  1692. Solutions to Maxwell's equations,  as  retarded  or  advanced  potentials.
  1693. Electrodynamic fields  corresponding to  retarded  potentials.
  1694. Electrodynamic fields  corresponding to  advanced  potentials.
  1695. The gauge of retarded potentials:  is it  really  the Lorenz gauge?
  1696. Power radiated by an accelerated charge:  The Larmor formula (1897).
  1697. Lorentz-Dirac equation  for the motion of a point charge is of  third  order.

    Capacitors and Electrostatic Distributions

  1698. Capacitance  is measured in farads  (F).
  1699. Capacity of a sphere.  Single-electrode capacitor.
  1700. Parallel-plates:  Two large planar electrodes separated by a small surface d.
  1701. Cylindrical wires or shielding.  Many possible configurations.
  1702. Leyden jars.  Earliests high-voltage capacitors.
  1703. Ultracapacitors:  One farad or more.

    Electromagnetic Dipoles

  1704. Molecular electric dipole moments.  First studied by Peter Debye in 1912.
  1705. Force exerted on a dipole  by a  nonuniform  field.
  1706. Torque on a dipole  is proportional to its cross-product into the field.
  1707. Electric and magnetic dipoles:  Dipolar solutions of Maxwell's equations.
  1708. Static distributions of magnetic dipoles  can be emulated by steady currents.
  1709. Static distributions of electric dipoles  are equivalent to charge distributions.
  1710. Field at center of a uniformly magnetized or polarized sphere of  any  size.
  1711. Sign reversal  in magnetic and electric fields from matching dipoles.
  1712. Relativistic dipoles:  A moving magnet develops an electric moment.

    Magnetism;  Electromagnetic Properties of Matter

  1713. Magnetization and polarization  describe densities of  bound  dipoles.
  1714. Distinct magnetization and polarization  gauges  may yield the same field.
  1715. Maxwell's equations in matter:  Electric displacement & magnetic strength.
  1716. Electric susceptibility  is the propensity to be polarized by an  electric field.
  1717. Electric permittivity and magnetic permeability.  Related to susceptibilities.
  1718. Paramagnetism:  Weak  positive  susceptibility.
  1719. DiamagnetismLorentz force turns orbital moments against an external B.
  1720. Magnetic levitation:  How to skirt the theorem of Samuel Earnshaw (1842).
  1721. Pyrolytic carbon:  The most diamagnetic substance, at room temperature.
  1722. Bohr-van Leeuwen Theorem:  Diamagnetism and paramagnetism cancel ?!
  1723. Thermodynamics of dielectric matter:   dU = E.dD + ...
  1724. Ferromagnetism:  Permanent magnetization without an external field.
  1725. Antiferromagnetism:  When adjacent dipoles tend to oppose each other...
  1726. Ferrimagnetism:  With two kinds of dipoles, partial cancellation may occur.
  1727. Magneto-optical effect  discovered by Faraday on September 13, 1845.
  1728. Ohm's Law:  Current density is proportional to electric field:  j = s E.
  1729. Bloch equations:  Longitudinal and transverse magnetization relaxation.
  1730. Cotton effect:  Interaction of light with  chiral  molecules.

    Permanent Magnets

  1731. The relativistic origin of magnetism.
  1732. Magnetometry.  How do you measure a permanent magnet?
  1733. Make a magnet  without using electric current or another magnet.
  1734. Halbach arrays:  Field is reinforced on one side and vanishes on the other.

    Motors and Generators

  1735. Homopolar motor:  The first electric motor, by  Michael Faraday  (1831).
  1736. Faraday's disk  can generate huge currents at a low voltage.
  1737. Magic wheels:  Two repelling ring magnets mounted on the same axle.
  1738. Beakman's motor.  Current switches on and off as the coil spins.
  1739. Tesla turbine.  Stack of spinning disks with outer intake and inner outflow.

    Tesla's World

  1740. Tesla coil.  A low-current high-voltage generator.
  1741. Schumann's cavity  is resonating at 8 Hz, below the ionosphere.

    Electronics 101

  1742. Mechanical switches.  Working out proper  snubber networks.
  1743. Mechanical relays.  Flyback diodes in parallel with DC-controlled coils.
  1744. Diodes:  PN, PIN, Silicium, Germanium, Schottky, Zener, varicap, etc.
  1745. Temperature coefficients  (tempco)  and  temperature compensation  (TC).
  1746. Operational amplifiers  A quick survey of those indispensable  analog  ICs.
  1747. Bipolar Junction Transistors  (BJT) :  NPN  and  PNP  polarity types.
  1748. Thyristor.  GE's  silicon-controlled rectifier  (SCR)  has  4  silicon layers.
  1749. Triacs  conduct in either direction once triggered, until current drops to zero.
  1750. A diac  is turned on by a large voltage.  It turns off when current is too low.
  1751. Field-programmable gate arrays  (FPGA).  Digital flexibility at high speed.
  1752. Hall effect.  The  classical  effect discovered by  Edwin Hall  in 1879.

    The Vacuum

  1753. Aristotle's plenism.  Downfall of the  Horror Vacui  doctrine  (17th century).
  1754. Sprengel's pump (1865)  made  Crookes tubes  and  lightbulbs  possible.
  1755. Vacuum tubes.  Heated filaments, grids and electrons moving in a vacuum.
  1756. Dirac's equation  predicted  positrons as holes in a bizarre vacuum.
  1757. The Quantum Vacuum.  The vacuum isn't empty.  Structure of the vacuum.

    Special Relativity

  1758. Observers in motion:  An elementary derivation of the Lorentz Transform.
  1759. Combining parallel velocities  never results in a speed exceeding  c.
  1760. Combining velocities  when they're not collinear.
  1761. The headlight effect:  An isotropic source will radiate forward if it moves.
  1762. Closing speed:  The distance between objects  may  change faster than  c.
  1763. Fizeau's empirical relation  between refractive index  (n) and  Fresnel drag.
  1764. Harress-Sagnac effect.  Measuring angular motion with fiber optic cable.
  1765. The  rapidity  concept  simplifies the relativistic addition of speeds.
  1766. Relative velocity of two photons:  Undefined if they have the same direction
  1767. Minkowski spacetime.  Lorentz transform applies to 4-vector coordinates.
  1768. The Lorentz transform expressed vectorially  for a  boost  of speed  V.
  1769. Wave vector:  The 4-dimensional gradient of the phase describes a wave.
  1770. Doppler shift:  The relativistic effect is not purely radial.
  1771. Relativistic momentum  and Einstein's relation between mass and energy.
  1772. Kinetic energy:  At low speed, the relativistic energy varies like  ½ mv 2.
  1773. Photons and other massless particles:  Finite energy at speed  c.
  1774. The de Broglie celerity  (u)  is inversely proportional to a particle's speed.
  1775. Compton diffusion:  The result of collisions between photons and electrons.
  1776. The Klein-Nishina formula:  gives the  cross-section  in Compton scattering.
  1777. Compton effect is suppressed  for visible light and bound electrons.
  1778. Elastic shock:  Energy transfer is  v.dp.  (None is seen from the barycenter.)
  1779. Photon-photon scattering  is like an  elastic collision of two photons.
  1780. Cherenkov effect:  When an electron exceeds the celerity of light...
  1781. Constant acceleration  over an entire lifetime will take you  pretty far.
  1782. Langevin's twins paradox.  Confirmed by the  Häfele-Keating experiment.
  1783. Terrell effect.  Apparent rotation of a fast-moving body.

    Photonics

  1784. Photons  are quanta of light.  They're  both  wavelike and corpuscular.
  1785. The photoelectric effect  was explained by Albert Einstein in 1905.
  1786. Signal-to-noise ratio  of light sensors:  The ultimate physical limit.
  1787. Soft photons  carry (almost) no energy but still have unit spin.

    Nuclear Physics

  1788. Henri Becquerel  and the [second] discovery of natural radioactivity (1896).
  1789. Pierre & Marie Curie:  The discovery of new radioactive elements (1898).
  1790. Rutherford lead-block experiment.  The three types of ionizing radiations.
  1791. Radioactive-decay law  was formulated by Rutherford and Soddy,  in 1902.
  1792. Geiger-Marsden experiment:  There's a tiny dense nucleus inside the atom!
  1793. Alpha-decay:  Polonium (Po-210, Z=84) decays into Lead (Pb-206, Z=82).
  1794. Mass Defect:  In a nuclear reaction, the Q-value balances the mass change.
  1795. The  standard  decay modesa, b-, 2b-, b+, e (electron capture)  or  IT.
  1796. The 4 radioactive series:  Thorium, Neptunium, Uranium and Actinium.
  1797. Other decay modes:  Proton or neutron emission, fission and spallation.
  1798. The Geiger counter  measures the  activity flux  of ionizing radiation.
  1799. Scintillation  allows quantitive measurements of a gamma spectrum.
  1800. Cross-section:  A target looks as if its size depends on the projectile's speed.
  1801. Artificial radioactivity:  Neutron bombardment creates unstable nuclides.
  1802. Chain reactions:  When neutron-induced decays produce more neutrons...
  1803. Critical mass:  The smallest mass that will allow runaway chain reactions.
  1804. Thermonuclear bombs.  Nuclear fusion ignited by fission devices.
  1805. Carbon-dating:  Radiocarbon ratio starts decaying when an organism dies.
  1806. Fusion of deuterons:  Helium is formed with liberation of energy.
  1807. The Proton-Proton chain fusion  powers all stars less than 1.5 solar masses.
  1808. Catalytic nuclear reactions.  The  CNO cycle  yields 7% of the Sun's power.
  1809. Triple-Alpha process  explains the abundance of Carbon and Oxygen,
  1810. Tokamak reactors:  Deuterium-Tritium fusion  (DT)  is the easiest to ignite.
  1811. Farnsworth-Hirsch fusor:  Controlled fusion on a desktop.  Neutron source.
  1812. Polywell reactor:  The design advocated by the late  Robert Bussard.
  1813. Amateur nuclear physics:  Demystifying nuclear energy and radioactivity.
  1814. The Radioactive Boyscout  and other misguided experimenters.
  1815. Natural fission reactors.  Predicted in 1956.  Discovered in Gabon in 1972.
  1816. Safe reactors:  Fast automatic shutdown using  UZrH  fuel rods.
  1817. Muon-facilitated nuclear fusion  occurs at low temperatures  (Frank, 1947).

    Ionizing Radiation

  1818. Cathode-ray tubes (CRT, 1875).  Due to  William Crookes (1832-1919).
  1819. X-rays  were discovered in 1895 by Wilhelm Röntgen (1845-1923).
  1820. Bragg peak (1903).  An ionizing ray loses a lot of energy near its demise.
  1821. X-rays crystallography  (XRC)  was founded by  Max von Laue, in 1912.
  1822. Synchrotron radiation  is produced by bending a beam of charged particles.
  1823. Brehmsstrahlung:  The radiation emitted by decelerating charged particles.
  1824. Dose  deposited by radiation in human tissue.  1 Sv = 1 J/kg = 100 Rem.

    The Weak Nuclear Force

  1825. Pauli  deduced the existence of the neutrino from conservation laws.
  1826. Fermi theory  of  beta decay  (1934).
  1827. Direct detection of neutrinosCowan-Reines neutrino experiment  (1956).
  1828. Parity violation  was established by the  Wu experiment  (1956).
  1829. Discovery of the muon-neutrino.  Steinberger, Lederman, Schwartz  (1962).
  1830. Neutrino oscillations.  Solar neutrinos revealed nonzero neutrino masses.

    The Strong Nuclear Force:  Quarks, Gluons & Color SU(3)

  1831. Confined color charges.  Only  color-neutral  particles can be observed.
  1832. Isospin  (isotopic spin)  is like  spin  in a disembodied  Hilbert space.
  1833. Bootstrap principle  by  Geoffrey Chew  and  Steve Frautschi  (1961).
  1834. The  8  Gell-Mann matrices.  SU(3)  is an eight-dimensional Lie group.
  1835. Quantum Chromodynamics (QCD).  The way  color charges  are traded.
  1836. Deep inelastic scattering  of electrons by protons or bound neutrons (1967).
  1837. Renormalization of Yang-Mills (gauge) theories  ('t Hooft, 1971).
  1838. Asymptotic freedom  of the  strong force  at small distances (1973).

    Particle Detectors

  1839. Scintillation counter.  Invented by  William Crookes  in 1903  (using ZnS).
  1840. Geiger counter.  Counting ionizing particles by the avalanches they cause.
  1841. Cloud chamber.  Mist condenses first along the tracks of ionizing particles.
  1842. Nuclear emulsionsLatent images  are produced along particle tracks.
  1843. Bubble chamber.  Nucleation occurs along trails left by ionizing particles.
  1844. Wire chamber (1968).  Multi-wire proportional chamber  (MWPC).

    Particle Accelerators

  1845. Electrostatic generators.  Accelerating charged particle with electric fields.
  1846. Linear accelerators  (1924).  Using waves rather than static electric fields.
  1847. Cyclotron  (1929).  A constant magnetic field creates spiraling trajectories.
  1848. Betatron  (1934).  Accelerating electrons with a changing magnetic field.
  1849. Microtron  (1944).  Modified cyclotron needing only small electrodes.
  1850. Synchrotrons  (1944, 1945).  Modern circular particle accelerators.
  1851. Strong focusing  of charged beams,  using alternating gradients.
  1852. Large Hadron Collider (LHC).  The largest circular accelerator ever.
  1853. Wakefield accelerators.  Particles surfing the wake of a laser in a plasma.

    Supersymmetry  between bosons and fermions

  1854. History of Supersymmetry  (SUSY).
  1855. The Wess-Zumino-Witten model  (WZW).

    String Theory

  1856. Unification:  Consistency is required.  Actual high-energy unification is not.
  1857. Kaluza-Klein Theory:  Postulating an extra dimension for electromagnetism.
  1858. 1960's hadron physicsRegge trajectories  begat constant-tension strings.
  1859. Gabriele Veneziano:  The magic of Euler's  beta and gamma functions.
  1860. Leonard Susskind (1940-):  The basic idea of a fundamental string.
  1861. Joël Scherk (1946-1979) & John Schwarz:  Rediscovering  gravity.
  1862. Michael Green & John Schwarz:  Hoping for a  Theory of Everything.
  1863. String QuintetFive  different consistent string theories!
  1864. M-Theory:  Ed Witten's 11-dimensional brainchild, unveiled at  String '95.
  1865. The brane world scenarios  of  Lisa Randall  and  Burt Ovrut.

    Quantum Gravity:  Toward a theory of everything  (TOE).

  1866. Wheeler-DeWitt equation (WdW).  The basis for  loop quantum gravity.
  1867. Loop Quantum Gravity  (LQG).
  1868. Anti-de Sitter space  (AdS).
  1869. Conformal field theory  (CFT).
  1870. Maldacena duality:  AdS/CFT correspondence  (1997).
  1871. AMPS Firewall:  Almheiri, Marolf, Polchinski, and Sully  (2012).

    Gauge Theories

  1872. Fluid mechanics:  Tracking actual particles.

    Physics of Gases and Fluids

  1873. Atmospheric pressure  varies vertically in proportion to the density of air.
  1874. The Magdeburg hemispheres  are held together by more than a ton of force.
  1875. The ideal gas laws  of Boyle, Mariotte, Charles, Gay-Lussac, and Avogadro.
  1876. Joule's law:  Internal energy of an ideal gas depends only on temperature.
  1877. Deflating a tire:  Releasing a pressurized gas into the atmosphere.
  1878. The Van der Waals equation  and other interesting equations of state.
  1879. Virial equation of state.  Virial expansion coefficients.  Boyle's temperature.
  1880. Viscosity  is the ratio of a shear stress to the shear strain rate it induces.
  1881. Permeability and permeance:  Vapor barriers and porous materials.
  1882. Resonant frequencies of air in a box.
  1883. The Earth's atmosphere.  Pressure at sea-level and total mass above.
  1884. Composition of dry air  at sea level  (for 450 ppm carbon dioxide).
  1885. Humidity.  The moisture content of  clear  atmospheric air.
  1886. The first hot-air balloon  (Montgolfière)  was demonstrated on June 4, 1783.
  1887. Sulfur hexafluoride  is a very heavy gas and a good electrical insulator.

    Virial

  1888. Virial of force:  A dynamic quantity defined by  Rudolf Clausius  in 1870.
  1889. Virial.  The classical  virial of momentum  is a conserved quantity.
  1890. The relativistic virial  is defined at constant time  in the observer's frame.
  1891. Quantum virial:  The quantum counterpart of the classical virial.

    Transport Properties of Matter

  1892. Viscosity:  The transport of microscopic momentum.
  1893. Brownian motion  and  Einstein's estimate of molecular sizes.
  1894. Thermal Conductivity:  The transport of microscopic energy.
  1895. Diffusivity:  The transport of  chemical concentration.
  1896. Boltzmann Transport Equation:  Solve for a  continuous random variable.
  1897. Speed of Sound:  Reversible transport of a pressure disturbance in a fluid.

    Sound and Acoustics

  1898. The speed of sound in the atmosphere  varies with altitude.
  1899. Newton's formula is off by 15.48%  under  (bad)  isothermal assumptions.
  1900. Speed of sound in a fluid,  computed under  (good)  isentropic  assumptions.
  1901. Perceived loudness  differs from absolute  (physical)  loudness of sound.
  1902. Acoustical limits:  Sound waves have a limited frequency range.

    Mathematical Aspects of Music

  1903. Western originsGregorian modes  just denoted specific vocal  octaves.
  1904. Note durations  follow a binary progression.  Dotting prolongs by  50%.
  1905. Tempo:  The speed of music.  What the  metronome  measures.
  1906. Beats of the metronome.  Bar  (measures)  and time signatures.
  1907. Triplet:  Group of  3  notes equally splitting  twice  their common duration.
  1908. DynamicsPianissimo  to  fortissimoDiminuendo  or  crescendo.
  1909. The Frequency Domain:  Sound reduces to a superposition of  tones.
  1910. Perfect pitch:  Native music speakers can easily name any absolute pitch.
  1911. Legacy pitch  and marketing hype.
  1912. Staves and clefs.  Transcribing and reading musical notes.
  1913. Common keyboards.  From double-octave (25 keys) to full piano (88 keys).
  1914. Musical intervals  are  ratios  of frequencies.
  1915. Quantifying the beauty of consonances:  Euler's  gradus  function  (1730).
  1916. The circle of fifths:  Best fit for the two simplest harmonies  (2:1 and 3:2).
  1917. Tritone:  Half an octave.  A dissonant interval  (F to B or B to F).
  1918. Scales.  The key of C major  (or A minor)  only uses  white  piano keys.
  1919. The 7 modes of the major scale  (diatonic modes)  including  natural minor.
  1920. Brightness and darkness.  Canonical quantification of an elusive concept.
  1921. Non-diatonic minor scalesMelodic minor  and  harmonic minor.
  1922. Harmonic major scale.  The mirror inverse of the harmonic minor  scale.
  1923. Other noteworthy heptatonic scales  and  Bebop scales  (with passing tones).
  1924. Hexatonic scales:  Whole-tone.  Augmented.  Prometheus.  Blues scale.
  1925. Two diminished scalesWhole-half diminished  &  half-whole diminished.
  1926. Chords  are separate notes played together.
  1927. Harmonization.
  1928. Cadence:  Resolution of tension.  Musical punctuation and closure.
  1929. Modulation  and  key changes.
  1930. Composing 101:  Some basic principles composers have been perusing.
  1931. Musical Dice:  Composing music without human intervention (1757).
  1932. Ornaments and embellishments:  Superficial changes respecting the melody.
  1933. Octave displacement  (Octave dispersion).
  1934. Jazz:  Lydian Chromatic Concept of Tonal Organization  (George Russell).
  1935. MIDI:  Musical Instrument Digital Interface  (1980).
  1936. Microtonal instruments  and exploration of  polychromatic music.
  1937. Guitars  and other fretted musical instruments.
  1938. Classical fretless 4-string instruments.  The violin family.
  1939. Recorders.  Wooden  flipple flutes  produce pure tones with little harmonics.

    Heptatonic Musical Scales

  1940. 4 heptatonic scales have signatures without double alterations in all 12 keys.
  1941. The 7 diatonic modes  include the  major mode  and  natural minor.
  1942. Brightness and darkness.  Canonical quantification of an elusive concept.
  1943. Non-diatonic minor scalesMelodic minor  and  harmonic minor.
  1944. Harmonic major scale.  The mirror inverse of the harmonic minor  scale.
  1945. Double-harmonic major scale.  Each of its  7  modes has one  cursed  key.
  1946. Hungarian major scale  and  Romanian major scale  are  non-cohemitonic.
  1947. Neapolitan Major is palindromic.  Neapolitan minor is  Major b2  inverted.
  1948. The Blues leading-tone scale  is the inverse of the  Persian scale.
  1949. The Major flat-5 scale  and its interesting modes.
  1950. Half a dozen Bebop modes  in three distinct scales.
  1951. Enigmatic scales:  Minor, ascending, descending and  (octonic)  mixed.
  1952. The Egyptian Crater scale  of  Jeff Buset  (2009).
  1953. Petra's Crater scale.  (2019).  The most imperfect heptatonic scale.

    Filters and Feedback

  1954. Complex pulsatance:  s = s+iw (damping constant + imaginary pulsatance)
  1955. Complex impedance:  Resistance and reactance.
  1956. Quality Factor (Q).  Ratio of maximal stored energy to dissipated power.
  1957. Nullators and norators:  Strange dipoles for analog electronic design.
  1958. Corner frequency  of a simple  first-order  low-pass filter.  -3 dB bandwidth.
  1959. Second-order  passive low-pass filter, with inductor and capacitor.
  1960. Two cascaded RC low-pass filters  can  almost  achieve critical damping.
  1961. Sallen-Key filters:  Active filters do not require inductors.
  1962. Lowpass Butterworth filter of order n :  The flattest low-frequency response.
  1963. Linkwitz-Riley crossover filters  used in modern active audio crossovers.
  1964. Chebyshev filters:  Ripples in either the passband or the stopband.
  1965. Elliptic (Cauer) filters  encompass all Butterworth and Chebyshev types.
  1966. Legendre filters  maximal roll-off rate for monotonous frequency response.
  1967. Gegenbauer filters:  From Butterworth to Chebyshev, via Legendre.
  1968. Phase response  of a filter.
  1969. Bessel-Thomson filters:  Phase linearity and group delay.
  1970. Gaussian filters:  Focusing on time-domain communication pulses.
  1971. Linear phase equiripple:  Ripples in group delay to go beyond Bessel filters.
  1972. DSL filters  allow POTS below 3400 Hz & block digital data above 25 kHz.
  1973. Switched capacitor:  Faking a resistor with a capacitor and a SPDT switch.

    Fantasy Engineering:  Just for fun.

  1974. Raising the Titanic,  with (a lot of) hydrogen.
  1975. Gravitational Subway:  From here to anywhere on Earth, in 42 minutes.
  1976. In a vacuum tube,  a drop to the center of the Earth would take 21 minutes.
  1977. Detecting a single graviton  is an impossible task.
  1978. Controled fusion:  Why the Tokamak approach can't produce energy.

    Woodworking

  1979. Solid wood:  Some common lumber and exotic woods.
  1980. Lumber  (timber).  Primary stock obtained from logs.
  1981. Composite boards.  From paperboard and cardboard to phenolic hardboard.
  1982. Carpenter's glues.  Physics & chemistry of  wood glues.  Cyanoacrylate glue.
  1983. Clamps.  Gluing any wood joint requires adequate clamping.
  1984. Axe and adze:  Two related tools which date back to the  Stone Age.
  1985. Drawknife, travisher and spokeshave.  Ancient tools predating  planes.
  1986. Hand planes:  The art of removing high-spots,  using a  sole  as reference.
  1987. Power planers:  Flatness and uniform thickness from  jointers  and  planers.
  1988. Joinery:  The various types of joints to choose from.
  1989. Portable bench,  vise  &  dogs.  In praise of the  Workmate 425  and others.
  1990. Mallets and hammers
  1991. Metal fasteners:  Nails,  wood screws  and  Twinfast  screws.  Nuts & bolts.
  1992. Dowels and treenails  Locking reinforced joints in all-wood construction.
  1993. Chisels
  1994. Whittling and carving
  1995. Hand saws  and their uses. 
  1996. Table saw.  Rip fence and pushblock.  Miter gauge or cross-cut sleds.
  1997. Other saws with circular blades:  Trim saw, miter saw, radial-arm saw.
  1998. Power-saws with non-circular blades:  Bandsaw,  jigsaw,  reciprocating saw.
  1999. Drills and drill bits.  Hand drill.  Handheld power drill.  Drill press.
  2000. Turning wood  on a  lathe
  2001. Awls  and trammel points.  Beam compass.
  2002. Calipers and dividers
  2003. Files and rasps
  2004. Sanding
  2005. Dust collection.  Cyclone or Thien baffle before vacuum dust extractor.
  2006. Staining and distressing.  Accenting wood grain and tooling marks.
  2007. Sealing and priming.  Sealing wood pores.
  2008. Finishing:  Applying tint,  paint,  lacquer,  varnish...

    Metalworking

  2009. Extracting metals:  Ores.  Mining.  Smelting.  Recycling.
  2010. Alloys.  Physics and chemistry of alloys.  Engineering grades.
  2011. Sheet metal.  Most metals or  single-phase  alloys can be rolled into sheets.
  2012. Welding,  soldering and brazing.  Joining metal pieces without fasteners.
  2013. Measuring.  Calipers, micrometer, surface plate, surface gauge.
  2014. Machinist vise.  Holding metal pieces in place while working on them.
  2015. Sawing and cutting.  Adjustable hacksaw and jeweler's saw.
  2016. Filing and grinding.
  2017. Drills.  Handheld drills and drill presses.  Drill bits.
  2018. Milling.  Making straight or curved cuts.
  2019. Lathe.  Turning and machining.
  2020. Engine turning.
  2021. Taps.  Threading holes or rods.
  2022. Circular champfers.  Mandatory external chamfer for off-the-shelf bolts.
  2023. Gunsmithing.  Some gun parts are illegal to make without a license.
  2024. Finishing.  Polishing, brushing.
  2025. Chemical surface treatments.  Blueing steel.  Anodizing aluminum.
  2026. Painting and coating.
  2027. Forging  hot iron pieces.  A blackmith hammers them on an  anvil.
  2028. Electrical Discharge Machining  (EDM).  Electric arcs as cutting tools.

    Steam Engines, Heat Engines

  2029. The aeolipile.  Ancient steam engine demonstrating jet propulsion.
  2030. Edward Somerset of Worcester (1601-1667):  Steam fountain blueprint.
  2031. Denis Papin (1647-1714):  Pressure cooking and the first piston engine.
  2032. Thomas Savery (c.1650-1715):  Two pistons and an independent boiler.
  2033. Thomas Newcomen (1663-1729) & John Calley:  Atmospheric engine.
  2034. Nicolas-Joseph Cugnot (1725-1804):  The first automobile  (October 1769).
  2035. James Watt (1736-1819):  Steam condenser and  Watt governor.
  2036. Richard Trevithick (1771-1833)  and the first railroad locomotives.
  2037. Sadi Carnot (1796-1832):  Carnot's cycle.  The theoretical  efficiency limit.
  2038. Sir Charles Parsons (1854-1931):  The modern  steam turbine  (1884).
  2039. Drinking Bird:  Room-temperature engine based on evaporative cooling.

    Thermodynamics

  2040. Elementary concept of temperature.  The zeroth law of thermodynamics.  Lord Kelvin 
 1824-1907  Hermann von Helmholtz 
1821-1894
  2041. Conservation of energy:  The first law of thermodynamics.
  2042. Increase of Entropy:  The second law of  thermodynamics.
  2043. State variablesExtensive  and  intensive  quantities.
  2044. Entropy  is  missing information, a measure of  disorder.
  2045. Nernst Principle  (third law):  Entropy is zero at zero temperature.
  2046. Thermodynamic potentials  are convenient alternatives to  internal energy.
  2047. Calorimetric coefficients, adiabatic coefficient  (g)  heat capacities, etc.
  2048. Relations between  isothermal  and  isentropic  coefficients
  2049. The thermal Grüneisen parameter.
  2050. Entropy of a Van der Waals fluid  as derived from its equation of state.
  2051. Dulong-Petit Law (1819).  The molar heat capacity of a metal is about  3 R.
  2052. Thermal effects of molecular vibrations  at moderate temperatures.
  2053. Latent heat  (L)  is the heat transferred in a change of  phase.
  2054. Van 't Hoff's equation.  How an equilibrium changes as temperature varies.
  2055. Cryogenic coefficients:  Lower temperature with an  isenthalpic  expansion.
  2056. Peltier effect:  Electrical cooling at a junction between dissimilar materials.
  2057. Relativistic Thermodynamics:  A moving body appears  cooler.
  2058. Inertia of energy  for an object at nonzero temperature.
  2059. Stefan's Law:  A black body radiates as the fourth power of its temperature.
  2060. The "Fourth Law":  Is there really an upper bound to temperature?
  2061. Hawking radiation:  On the entropy and temperature of a black hole.
  2062. Partition function:  The cornerstone of the statistical approach.

    Thermodynamics and Elasticity

  2063. Elastic properties.  Reversible deformations in resilient materials.
  2064. Hysteresis and resilience.  Stored elastic energy is never fully recovered.
  2065. Elastomers.  Unsaturated rubbers are cured by  sulfur vulcanization.
  2066. Coefficients ot thermal expansion:  Cubical  scalar  and linear  tensor.
  2067. Invar  anomaly:  The low thermal expansion of 36% Ni / 86% Fe alloy.
  2068. Waves in a solid:  P-waves (fastest), S-waves, E-waves (thin rod), SAW...
  2069. Thermodynamics of acoustics:  Dynamic coefficients and isothermal ones.
  2070. Rayleigh Wave:  The quintessential surface acoustic wave (SAW).

    Demons of Classical Physics

  2071. Laplace's Demon:  Deducing past and future from a detailed snapshot.
  2072. Maxwell's Demon:  Happily trading information for  entropy.
  2073. Shockley's Ideal Diode Equation:  Diodes don't violate the Second Law.
  2074. Szilard's engine:  Putting a simple-minded Maxwellian demon to work.
  2075. Landauer's principle:  The unavoidable thermodynamic cost of  forgetting.

    Statistical Physics

  2076. Lagrange multipliers.  One multiplier for each constraint of an optimization.
  2077. Microcanonical equilibrium.  Isolated system:  All states are equiprobable.
  2078. Equipartition of energy.  Every degree of freedom gets an equal share.
  2079. Canonical equilibriumBoltzmann factor  in a heat bath.
  2080. Grand-canonical equilibrium  when  chemical  exchanges are possible.
  2081. Bose-Einstein statistics:  One state may be occupied by  many  particles.
  2082. Fermi-Dirac statistics:  One state is occupied by  at most one  particle.
  2083. Boltzmann statistics:  The  low-occupancy limit  (most states unoccupied).
  2084. Maxwell-Boltzmann distribution  of molecular speeds in an  ideal gas.
  2085. Partition function:  The cornerstone of the statistical approach.
  2086. Fock basis  for the tensor product of many identical Hilbert spaces.

    Quantum Mechanics

  2087. Quantum Logic:  The surprising way quantum probabilities are obtained.
  2088. Swapping particles  either negates the quantum state or leaves it unchanged.
  2089. The Measurement Dilemma:  What makes  Schrödinger's cat  so special?
  2090. Matrix Mechanics:  Like measurements, matrices don't commute.
  2091. Schrödinger's Equation:  Nonrelativistic quantum particle in a classical field.
  2092. Noether's Theorem:  Conservation laws express the symmetries of physics.
    Quantum Formalism :
  2093. Kets  are Hilbert vectors (duals of bras) on which observables operate.
  2094. Hilbert space for a composite systemTensor product  of Hilbert spaces.
  2095. Commutators  give observables the structure of a  Lie algebra.
  2096. Some observables  are associated with  classical  physical quantities.
  2097. Uncertainty relations  hold whenever the commutator does not vanish.
  2098. Transverse certainties.  Measuring two non-conjugate observables.
  2099. Evolution with time  of quantum states and average values.
  2100. The time-energy uncertainty relation  in  nonrelativistic quantum theory.
  2101. Spin  is a form of angular momentum  without a classical equivalent.
  2102. Pauli matrices:  Three 2 by 2 matrices with  eigenvalues  +1 and -1.
  2103. Quantum Entanglement:  The  singlet  and  triplet  states of two electrons.
  2104. Bell's inequality  is violated for the  singlet  state of two electron spins.
  2105. KS theorem:  Any definite values would violate physical relations  (1967).
  2106. Mach-Zehnder interferometer  by  Zehnder (1891) & Ludwig Mach (1892).
  2107. Generalizations of Pauli matrices  beyond spin ½.
  2108. Density operators  are quantum representations of imperfectly known states.
  2109. Kubo-Martin-Schwinger (KMS)  condition.
  2110. Quantum stability of ordinary matter  depends on electrons being  fermions.

    The Schrödinger Equation

  2111. Hamilton's analogy  equates the principles of Fermat and Maupertuis.
  2112. Box confinement by a finite potential  in one dimension and 3 dimensions.
  2113. Rotator:  Quantization of the angular momentum.
  2114. Harmonic oscillator.
  2115. Coulomb potential:  Classification of chemical orbitals.
  2116. Wallis formula for p  (1655).  A quantum-mechanical derivation  (2015).
  2117. Any second-order linear equation reduces to Schrödinger's equation.
  2118. Perturbative solution  entails a  divergent  asymptotic series.

    Counting Photons Nondestructively  (Haroche Experiment)

  2119. Biographical facts about Serge Haroche:  Genealogy, family and career.
  2120. The Einstein box:  A thought-experiment discussed by Einstein and Bohr.
  2121. Micromaser:  A closed cavity doesn't require perfect mirrors.
  2122. Purcell effect:  Enhancement of spontaneous fluorescence in a cavity.
  2123. Quantum nondemolition measurements (QND)  are  almost classical.
  2124. Circular Rydberg atom.  The outer electron is in orbit at a large distance.
  2125. Rydberg clock:  Two superposed Rydberg states look like a rotating dipole.
  2126. Jaynes-Cummings model (1963):  2-level atom in an optical cavity.
  2127. Fabry-Pérot cavity
  2128. Superconductivity of Niobium
  2129. Fock basis.  Quantum states where the number of photons is well-defined.
  2130. The electromagnetic phase  is the  conjugate  of the number of photons.
  2131. Coherent states  in electromagnetism  (Roy J. Glauber, 1963).
  2132. Light-shift effect  (Claude Cohen-Tannoudji, 1961).
  2133. Rabi escillations  at  50 kHz   (I.I. Rabi).
  2134. Ramsey Interferometer  (Norman Ramsey, 1949).
  2135. Circuit QED.  A solid-state counterpart of  Cavity QED.
  2136. Questions and Answers.  Discussions related to the Haroche experiments.

    Quantum Field Theory  (QFT)

  2137. The Lamb shift.  The original motivation for  renormalization.
  2138. Quantum Electrodynamics (QED)  is the simplest  quantum field theory.
  2139. Second Quantization:  Particles are modes of a quantized field.
  2140. Elementary particles:  Quarks and leptons.  Vector bosons and graviton.
  2141. Composite hadrons:  Zoo of  mesons  and  baryons  begotten by  QCD.
  2142. Bethe-Salpeter Equation:  A relativistic equation for bound-state problems.
  2143. Path-integral formulation.
  2144. Renormalization.  The renormalizability of a theory is a key requirement.
  2145. S-matrix:  The unitary transformation chaacterizing a scaterring process.
  2146. Constructive quantum field theory.  Making quantum theory  relativistic.
  2147. Wightman axioms.  Traditional basis for  constructive quantum field theory.
  2148. Mass gapInfimum  of the energies of states orthogonal to the vacuum.
  2149. Coleman-Mandula theorem (1967). 
  2150. Haag-Lopuszanski-Sohnius theorem (1975). 
  2151. The Higgs mechanism  gives elementary particles an  intrinsinc  mass.
  2152. Yukawa interactions  mediated by massive spinless particles.

    Matter and Antimatter

  2153. Klein-Gordon equation (1926).  A second-order relativistic wave equation.
  2154. Dirac wave equation (1928).  This first-order equation predicts  antimatter.
  2155. Discovery of the positron  by  Carl Anderson  (1930).  The first antiparticle.
  2156. Crossing symmetry:  Antimatter is like matter going backward in time. 
  2157. Excess of matter over antimatter  in the early Universe.

    From Ancient Alchemical Recipes to Modern Chemistry

  2158. Measuring chemical stuff in  moles  (mol)  makes  stoichiometry  obvious.
  2159. Modern distillation  (alembic = still-head)  is due to  Mary the Jewess.
  2160. The retort  was a prominent tool of alchemists and chemists for centuries.
  2161. Production and distillation of alcohol.  Its origins and limitations.
  2162. Black powder:  An ancient explosive, still used as a propellant (gunpowder).
  2163. Predicting explosive reactions:  A useful but oversimplified rule of thumb.
  2164. Thermite  generates temperatures hot enough to weld iron.
  2165. Enthalpy of Formation:  The tabulated data which gives energy balances.
  2166. Exothermic crystallization  of  sodium acetate trihydrate  ("hot ice").
  2167. Gibbs Function  (free energy):  Its sign tells the direction of spontaneity.
  2168. Berthollet's Law of Mass Action  governs every chemical equilibrium.
  2169. Labile  is not quite the same as  unstable.
  2170. Inks:  India ink, atramentum, cinnabar (Chinese red HgS), iron gall ink, etc.
  2171. Traditional pigments:  Carbon black, vermillion, brazilin, malachite, etc.
  2172. Beeswax  is dominated by a long-chain ester  (a "wax")  called  mycerin.
  2173. Pine pitch & cedar pitch:  Two similar products with different properties.
  2174. Gum Arabic:  The  magic bullet  of ancient chemistry.
  2175. Ancient acids:  From vinegar and lemon juice to vitriolic acid and more.
  2176. Gold ChemistryAqua regia ("Royal Water") dissolves gold and platinum.
  2177. Who was the "father" of modern chemistry?

    Acids  &  Bases

  2178. History of acidity:  Mineral acids and organic acids.
  2179. Muriatic acid  or  hydrochloric acid  (HCl)  is a strong acid.
  2180. Sulfuric acid:  Strong diprotic acid with weak second dissociation.
  2181. Nitric acid  ( aqua fortis ).
  2182. Carboxylic acids:  The weak organic acids  (formic, acetic, etc.).
  2183. Picric acid.
  2184. Sulfonic acids  are stronger than their carboxylic counterparts.
  2185. Sulfamic acid.
  2186. Bronsted acids:  are donors of protons  (1923).
  2187. Lewis acids  are acceptors of electron-pairs  (1923).
  2188. Hammett acidity function.
  2189. Superacids:  Stronger than pure sulfuric acid.
  2190. Superbases  have greater affinities for protons than the hydroxide ion.
  2191. What is the strongest acid?

    Water  &  Aqueous Solutions

  2192. Pure liquid water  includes hydronium and hydroxide ions.
  2193. In  dilute  solutions,  the activity of water molecules is nearly constant.
  2194. Arrhenius acids  protonate water  (Arrhenius, 1884).
  2195. pH  =  -log( [H3O+] )   was introduced by Søren P.L. Sørensen in 1909.
  2196. Diprotic acids  have the same  pH  effect via either protonation.
  2197. Polyprotic acids and bases  and their associated  dissociation polynomials.
  2198. Titration curve:  Sharp  pH  change at an acid-base neutralization point.
  2199. Buffer solutions.
  2200. Sulfurous acid:  Sulfur dioxide solution, containing bisulfite and sulfite ions.

    Organic Chemistry

  2201. Birth of organic chemistryUrea  was first made  chemically  in 1828.
  2202. Aliphatic saturated hydrocarbons  are called  alkanes.
  2203. Unsaturated hydrocarbons  feature some carbons tied by multiple bonds.
  2204. Acetylene and alkynes  feature carbon atoms linked by a  triple  bond.
  2205. Aomatic compounds  feature  6  coplanar carbons in a ring.
  2206. Carbohydrates  (glucids)  can be decomposed into carbon and water.
  2207. Functional groups  determine the basic reactions of  organic chemistry.
  2208. Oxocarbons  (oxides of carbon).  Organic chemistry without hydrogen.

    Ionization, Oxidation-Reduction and Electrochemistry

  2209. The oxidation number  increases by  oxidation  and decreases by  reduction.
  2210. Salt bridges  put solutions in electrical contact but prevent transfers of ions.
  2211. Nernst equation:  The voltage induced by different concentrations.
  2212. Redox Reactions:  Oxidizers are  reduced  by accepting electrons...

    Hands-on Chemistry

  2213. Chemistry set  from a bygone era  (if memory serves).
  2214. Basic glassware:  Flasks, funnels, tubes, bulbs, condensers, etc.
  2215. PTFE  =  Polytetrafluoroethylene  =  Teflon®.
  2216. Ground-glass joints:  Glass-to-glass  conical joints  have a  1:10  taper.
  2217. Titration.  Measuring the concentration of a reactant.
  2218. Acidity color indicators.  From litmus (1300) to  universal indicators (1933).
  2219. Methylene blue  as a redox indicator.  The  blue bottle  experiment.
  2220. Sugar dehydration with sulfuric acidBlack snake  experiment.
  2221. Waterlock:  1 g of  sodium polyacetate  can hold  825 mL  of water.
  2222. Negative-X:  Water ignites a mixture of zinc and  ammonium nitrate.
  2223. Nitrogen triiodide  Is an extremely unstable explosive when dry.

    Medicine by the Numbers

  2224. The normal body temperature  is  37°C  (98.6°C)  or is it?
  2225. Normal blood pressureSystolic  (max.)  and  diastolic  (min.) pressures.
  2226. Normal pulse.  1 Hz  (one hertz)  is  60  beats per minute.
  2227. Blood circulation  (1628).  Discovered by  William Harvey  (1578-1657).
  2228. Respiration  is a form of combustion  (Lavoisier  and  Laplace, 1780).
  2229. Normal caloric intake.  100 W  of power is about  2065 kcal/day.
  2230. International Unit  (IU).  Arbitrarily-defined rating of  biological activity.
  2231. Concentration  is an amount (either mass or moles) per volume.
  2232. Glycosylated hemoglobin  (HbA1c) relates to  average  blood glucose (bG).
  2233. Human fat.  Gaining and losing weight.  Metabolism.
  2234. Body Mass Index  (BMI, in kg/m2).  Weight divided by square of height.
  2235. Medical abbreviations  commonly used in prescriptions and elsewhere.
  2236. Mosquito-borne diseases:  Malaria, dengue, chikungunya, etc.
  2237. Propagation of epidemics.  Analytic solution of the basic SIR model.
  2238. Pandemic:  To save the lives of others,  get infected as late as possible...
  2239. Caffeine  is the most widely consumed  psychotropic  substance.

    General Relativity

  2240. Deflection of starlight by the Sun.  What does  General Relativity  change?
  2241. The Harress-Sagnac effect.  Observer rotating with an optical loop.
  2242. Relativistic rigid motionEquilibrium  modified at the speed of  sound.
  2243. In the Euclidean plane:  Contravariance and covariance.
  2244. In the Lorentzian plane:  Contravariance and covariance revisited.
  2245. Tensors of rank n+1  are linear maps that send a vector to a tensor of rank n.
  2246. Signature  of the quadratic form defined by a given metric tensor.
  2247. Covariant and contravariant coordinates  of rank-n tensors, in 4 dimensions.
  2248. The metric tensor and its inverse.  Lowering and raising indices.
  2249. Partial derivatives  along  contravariant  or  covariant  coordinates.
  2250. Christoffel symbols:  Coordinates of the partial derivatives of basis vectors.
  2251. Covariant derivativesAbsolute differentiation.  The  nabla  operator  Ñ.
  2252. Contravariant derivatives:  The lesser-known flavor of absolute derivatives.
  2253. The antisymmetric part of Christoffels symbols  form a fundamental  tensor.
  2254. Totally antisymmetric spacetime torsion  is described by a  vector field.
  2255. Levi-Civita symbols:  Antisymmetric with respect to any pair of indices.
  2256. Einstein's equivalence principle  implies  vanishing  spacetime torsion.
  2257. Ricci's theorem:  The covariant derivative of the metric tensor vanishes.
  2258. Curvature:  The  Ricci tensor  is a contraction of the  Riemann tensor.
  2259. The Bianchi identity  shows that the  Einstein tensor  is  divergence-free.
  2260. The Weyl tensor  is the traceless component of the  Riemann tensor.
  2261. Stress tensor:  Flow of energy density is density of [conserved] momentum.
  2262. Einstein's Field Equations:  16 equations in covariant form (Einstein, 1915).
  2263. Free-falling bodies:  Their trajectories are  geodesics  in curved spacetime.
  2264. Gravitational lensing.  How gravitation bends light.
  2265. The "anomalous" precession of Mercury's perihelion  is entirely  relativistic.
  2266. Schwarzschild metric:  The earliest exact solution to Einstein's equations.
  2267. van Stockum dust:  A metric with closed timelike curves  (Lanczos, 1924).
  2268. What is mass?
  2269. Unruh temperature  experienced by an accelerating observer.
  2270. Electromagnetism:  Covariant expressions, using tensors.
  2271. Kaluza-Klein theory of electromagnetism  involves a  fifth dimension.
  2272. Harvard Tower Experiment:  The slow clock at the bottom of the tower.
  2273. Shapiro time delay:  Effect on radar signals of gravitational time dilation.
  2274. Warp drive.  Traveling  faster than light  (FTL) ?
  2275. Frame dragging.  The effect predicted by  Lense  and  Thirring  in 1918.
  2276. The Poynting-Robertson drag:  Dust spirals  inward  around a bright star.

    Relativistic Gravity  &  Gravitational Waves

  2277. Changes in the quadrupole moment of mass  cause gravitational waves.
  2278. The energy carried by G-waves  first betrayed their actual existence  (1974).
  2279. PDH technique.  Optical stabilization of the frequency of laser light  (1983).
  2280. LIGO:  Laser Interferometer Gravitational-wave Observatory (since 1992).
  2281. 2017 Nobel Prize  for the detection of gravitational waves by  LIGO.

    Cosmology 101

  2282. Olbers' paradox:  The night sky  isn't  brightly lit.  Why?
  2283. Mach's principle:  Local physics is determined by the whole Universe.
  2284. Kant's Island Universes:  The Universe is filled with  separate  galaxies.
  2285. The Cosmological Principle:  The Universe is homogeneous and isotropic.
  2286. Medium-scale structure of the Universe:  The foamy distribution of galaxies.
  2287. The Big Bang:  An idea of Georges Lemaître  mocked by Fred Hoyle.
  2288. The Cosmic Microwave Background (CMB):  Its spectrum and density.
  2289. Primordial nuclear soup:  Hydrogen, Helium, Deuterium and Lithium.
  2290. Cosmic redshift (z) of light from a Universe (1+z) times smaller than now.
  2291. Multiple choices and misguided explanations for cosmic redshifts.
  2292. Hubble Law  relates  redshift  and  distance  for comoving points.
  2293. Omega (W):  The ratio of the density of the Universe to the critical density.
  2294. Friedmann universe (1922).  Its observed  accelerating  expansion (1998).
  2295. Look-Back Time:  The time elapsed since observed light was emitted.
  2296. Distance:  In a cosmological context,  there are several flavors of distances.
  2297. Comoving points follow the expansion of the Universe.
  2298. The Anthropic Principle:  An unsatisfactory type of absolute constraint.
  2299. Dark matter & dark energy:  Gravity betrays the existence of  dark  stuff.
  2300. The Pioneer Anomaly:  The anomalous braking of the Pioneer spaceprobes.

    Galaxies and large-scale structure of the Universe

  2301. The Milky Way  is the name given to the star system that harbors our Sun.
  2302. The local group  is dominated by the Milky Way & Andromeda galaxies.
  2303. The virgo cluster  dominates our corner of the Universe.
  2304. Superclusters  are the largest objects in the Universe.
  2305. Spiral galaxiesAndromeda  and the  Milky Way  are examples..
  2306. Ring galaxies  a rare type of galaxies,  difficult to classify.
  2307. Elliptical galaxies  Old galaxies.  The largest we know is  IC 1101.
  2308. Supermassive black holes  at the core of almost all galaxies...

    Stars and Stellar Objects

  2309. Nuclear fusion  is what powers the stars.
  2310. Brown dwarves  glow from gravitational contraction.  Fusion isn't ignited.
  2311. Red dwarves  can burn hydrogen for  trillions  of years.
  2312. The Jeans mass.  Above it, gases at temperature T collapse by gravitation.
  2313. Main sequence:  The evolution of a typical star.
  2314. Metallicity  (Z)  measures the abundance of all elements  beyond helium.
  2315. The earlest stars  (Population III)  came from what the  Big Bang  produced.
  2316. Eta Carinae  and  hypergiants.  The most massive stars possible.
  2317. Betelgeuse  and red supergiants.
  2318. Mira  (Omicron Ceti).  A very peculiar  variable star.
  2319. Rigel  and blue supergiants.
  2320. Planetary nebulae:  Aftermaths of stellar explosions.
  2321. White dwarfs:  The ultimate fate of our Sun and other small stars.
  2322. Neutron stars:  Remnants from the supernova collapse of medium stars.
  2323. Remnants of novae and supernovae  associated with dated events.
  2324. Stellar black holes  form when supermassive stars run out of nuclear fuel.
  2325. Primordial black holes.  Substellar black holes left over from the Big Bang.
  2326. Binary stars:  Pairs of unlike stars often gravitate around each other.
  2327. Binary X-ray source:  A small  accretor  in tight orbit around a  donor  star.

    The Solar System

  2328. Astronomical unit  (au).  Successive definitions of a standard unit of length.
  2329. Mean distance between the Sun and the Earth.nbsp; A tad above  1 au.
  2330. Parsec:  Triangulating interstellar distances, using the motion of the Earth.
  2331. The solar corona  is a very hot region of rarefied gas.
  2332. The Carrington solar storm  started on the 28th of August 1859.
  2333. Solar radiation:  The Sun has radiated away about 0.03% of its mass.
  2334. The Titius-Bode Law:  A numerical pattern in solar orbits?
  2335. The 4 inner rocky planets:  Mercury, Venus, Earth, Mars.
  2336. Earth and MoonThis  is home.
  2337. The asteroid belt:  Planetoids and bolids between Mars and Jupiter.
  2338. The 4 outer giant gaseous planets:  Jupiter, Saturn, Uranus, Neptune.
  2339. Chiron and other  centaurs  have decaying orbits between the giant planets.
  2340. Discovery of NeptuneUrbain Le Verrier  scooped John Couch Adams.
  2341. Pluto  and other  Kuiper Belt Objects  (KBO).
  2342. Sedna  and other planetoids beyond the  Kuiper Belt.
  2343. What's a planet?  The latest definition excludes  Pluto.
  2344. Heliosphere and Heliopause:  The region affected by solar wind.
  2345. Oort's Cloud  is a cometary reservoir at the fringe of the Solar System.
  2346. 'Oummuamua and Borisov.  Interstellar objects visiting the Solar system.

    Chaos Theory

  2347. Long-term stability of the Solar system.
  2348. The Butterfly Effect  in Meteorology.  (Edward N. Lorenz,  1962).
  2349. The Feigenbaum constants:  Bifurcation structure in the onset of chaos.

    Practical Formulas

  2350. Easy conversion between Fahrenheit and Celsius scales:  F+40 = 1.8 (C+40)
    Automotive :
  2351. Fuel efficiency:  (miles per gallon) × (liters per 100 km)  =  235.21458333...
  2352. Car speed  is proportional to tire size & engine rpm, divided by gear ratio.
  2353. 0 to 60 mph in 4.59 s,  may not always mean 201.96 feet.
  2354. Car acceleration. Guessing the curve from standard data.
  2355. "0 to 60 mph" time,  obtained from vehicle mass and actual average power.
  2356. Thrust  is the ratio of  power to speed  [measured  along direction of thrust].
  2357. Power as a function of chamber size  for internal combustion engines.
  2358. Optimal gear ratio  to maximize top speed on a flat road  (no wind).
    Surface Areas :
  2359. Heron's formula  (for the area of a triangle)  is related to the Law of Cosines.
  2360. Archimedes' formula  predates  Heron  by three centuries.
  2361. L'Huilier's formula:  Generalizing  Heron's formula  to spherical triangles.
  2362. Brahmagupta's formula  gives the area of a quadrilateral  (cyclic  or not).
  2363. Bretschneider's formula  for a quadrilateral of given sides and diagonals.
  2364. Vectorial area of a quadrilateralHalf  the cross-product of its diagonals.
  2365. Parabolic segment:  2/3 the area of circumscribed parallelogram or triangle.
    Volumes :
  2366. Content of an horizontal cylindrical tank.  given the height of the liquid in it.
  2367. Volume of a spherical cap,  or content of an  elliptical vessel,  at given level.
  2368. Content of a cistern  (cylindrical with elliptical ends),  at given fluid level.
  2369. Volume of a cylinder or prism,  possibly with tilted [nonparallel] bases.
  2370. Volume of a conical frustum:  Formerly a staple of elementary education...
  2371. Volume of  any  frustum  when horizontal area is a cubic function of height.
  2372. Volume of a sphere...  obtained by subtracting a cone from a cylinder !
  2373. Cavalieri's quadrature formula  for the area under a power curve.
  2374. The volume of a tetrahedron  is the determinant of three edges, divided by 6.
  2375. Volume of a wedge of a cone.
    Averages :
  2376. Filling a cistern with several canals.  Problem 26 in the  Jiuzhang Suanshu.
  2377. Splitting a job evenly  between two unlike workers.
  2378. Splitting a job unevenly  between two unlike workers.
  2379. Mixing solutions  to obtain a predetermined intermediate rating.
  2380. Alcohol solutions  are rated by volume not by mass.
  2381. Mixing alcohol solutions  to obtain an exact rating by volume (ABV).
  2382. Vinegar  is compared to a volumetric mix of pure acetic acid and water.
  2383. Preparing solutions with hydrate salts.  Example of citric acid.
  2384. Special averagesharmonic (for speeds), geometric (for rates), etc.
  2385. Mean Gregorian month:  either  30.436875 days, or  30.4587294742534...
  2386. The arithmetic-geometric mean  is related to a  complete elliptic integral.
    Geodesy and Astronomy :
  2387. Distance to the horizon  is proportional to the square root of your altitude.
  2388. Superior mirages.  How objects beyond the horizon are brought into view.
  2389. Distance between two points  on a great circle at the surface of the Earth.
  2390. Euclidean distance between two cities,  along a line  through  the Earth.
  2391. Geodetic coordinates:  Point of elevation h at latititude  j  and longitude  q.
  2392. The figure of the Earth.  Geodetic and geocentric latitudes.
  2393. Area of a spherical polygon.  How to apply  Girard's formula.
  2394. Kepler's Third Law:  The relation between orbital period and orbit size.

    Philosophy and Science

  2395. Creation and Discovery in Science.
  2396. Search for Extraterrestrial Intelligence.  If we listen, we  must  talk.
  2397. The Anthropic Principle:  The laws of physics must allow human life.
  2398. Science and Politics:  Political support for Science makes a society worthy.
  2399. What's Mathematics anyway?  The groundwork of scientific knowledge.

    Evolution of Life on Earth

  2400. Life:  The mysteries of evolution.
  2401. Hominid speciess.  The human family tree.
  2402. Fossil calendars:  420 million years ago, a  month  was only 9  short  days.
  2403. LUCA:  Last Universal Common Ancestor.  A deep-sea creature.
  2404. Geologic Time Scale (GTS):  Beyond all human calendars.
     
    Below are topics not yet integrated with the rest of this site's navigation.

    The Unexplained

  2405. The Magnetic Field of the Earth.
  2406. Life:  The origins of life on Earth.
  2407. Extraterrestrial life  Is there intelligence out there?
  2408. Nemesis:  A distant companion of the Sun could cause periodical extinctions.
  2409. Current Challenges to established dogma.
  2410. Unexplained artifacts and sightings.

    Open Questions (or tough answers)

  2411. The Riemann Hypothesis:   {Re(s) > 0   &   z(s) = 0}   Þ   {Re(s) = ½}.
  2412. Twin prime conjecture:  One of the oldest open mathematical questions.
  2413. Goldbach conjecture (1742):  Any even number  >2  is a sum of two primes.
  2414. Legendre's conjecture  There are primes between squares.
  2415. Landau's fourth problem;  Infinitely many primes follow a square.
  2416. Schnizel's hypothesis H.  Polynomials simultaneously prime infinitely often.
  2417. P = NP ?   Can we  find  in polynomial time what we can  check  that fast?
  2418. Collatz sequences  go from  n  to  n/2  or  (3n+1)/2.  Do they all lead to  1?
  2419. The Poincaré Conjecture (1904).  Proven by  Grisha Perelman  in 2002.
  2420. Fermat's Last Theorem (1637).  Proven by  Andrew Wiles  in 1995.
  2421. The ABC conjecture (1985)  of  Joseph Oesterlé  and  David Masser.
  2422. The union-closed sets conjecture (1979)  of  Péter Frankl.
  2423. The Hadwiger conjecture in graph theory (1943).
  2424. The Egyptian conjecture (1948)  of  Straus  and  Erdös.
  2425. Birch and Swinnerton-Dyer conjecture  about the rank of an elliptic curve.
  2426. Gilbreath's conjecture  was first formulated by  François Proth  in 1878.
  2427. g-conjecture  of  McMullen  (1970).  Proved by  Karim Adiprasito  in 2018.
  2428. Positive C2-diffeomorphisms on the circle.  Do they form a  simple  group?
  2429. Hadwiger-Nelson colorings are such that 2 like points are never 1 unit apart.

    Mathematical Miracles

  2430. The  only  magic hexagon.
  2431. The law of small numbers applied to conversion factors.
  2432. Quadratic formulas yielding long sequences of prime numbers.
  2433. The area under a Gaussian curve  involves the square root of  p
  2434. Exceptional simple Lie groups.
  2435. Monstrous Moonshine in Number Theory.

    Trivia

  2436. Oldest  open  mathematical problem:  Are there any  odd  perfect numbers?
  2437. Magnetic field of the EarthSouth side is near the geographic north pole.
  2438. From the north side,  a counterclockwise angle is positive  by definition.
  2439. What initiates the wind?  Well, primitive answers were not so wrong...
  2440. Why "m" for the slope of a linear function  y = m x + b ?  [in US textbooks]
  2441. The diamond mark on US tape measures corresponds to 8/5 of a foot.
  2442. Naming the largest possible number, in n keystrokes or less (Excel syntax).
  2443. The "odds in favor" of poker hands: A popular way to express probabilities.
  2444. Reverse number sequence(s) on the verso of a book's title page.
  2445. Living species: About 1400 000 have been named, but there are many more.
  2446. Dimes and pennies:  The masses of all current US coins.
  2447. Pound of pennies: The dollar equivalent of a pound of pennies is increasing!
  2448. Nickels per gallon:  Packing more than 5252 coins per gallon of space.

    Geography, Geographical Trivia

  2449. Geodetic coordinates,  based on the  Reference Ellipsoid  defined in 1980.
  2450. Geocentric coordinates  are almost never used in geography or astronomy.
  2451. Distance from the center of the Earth  to points located at the surface.
  2452. The volume of the Grand Canyon:  2 cm (3/4") over the entire Earth.
  2453. The Oldest City in the World:  Damascus or Jericho?
  2454. USA (States & Territories):  Postal and area codes, capitals, statehoods, etc.

    Money, Currency, Precious Metals

  2455. Inventing Money:  Brass in China, electrum in Lydia, gold and silver staters.
  2456. Prices of Precious Metals:  Current market values (Gold, Silver. Pt, Pd, Rh).
  2457. Medieval system:  12  deniers  to a  sol.
  2458. Ancien Régime  French monetary system.
  2459. British coinage  before decimalization.
  2460. Exchange rates  when the  euro  was born.
  2461. Worldwide circulation  of currencies.

    Bitcoin  (BTC)  and other crypto-currencies

  2462. What are bitcoins?
  2463. Who invented bitcoins?  Who is  Satoshi Nakamoto ?
  2464. Blockchain,  hashpuzzles,  Merkle trees,  public/private-key cryptography.

    The Counterfeit Penny Problem

  2465. Counterfeit Coin:  In 3 weighings, find an odd object among 12, 13 or 14.
  2466. Counterfeit Penny Problem: Find an odd object in the fewest weighings.
  2467. Explicit tables  for detecting  one  odd marble among  41,  in  4  weighings.
  2468. Find-a-birthday:  Detect an odd marble among 365, in 6 weighings.
  2469. Error-correcting codes for ternary numeration.
  2470. If the counterfeit is known to be heavier, fewer weighings may be sufficient.

    Calendars & Chronology

  2471. Calendrical ratios  and their slow evolution with time.
  2472. Julian Day Number (JDN).  Counting days in the simplest of all calendars.
  2473. The Week has not always been a period of seven days.
  2474. Egyptian year of 365 days:  Back to the same season after over 1500 years.
  2475. Heliacal rising of Sirius: Sothic dating.
  2476. Coptic Calendar:  Reformed Egyptian calendar based on the Julian year.
  2477. The Julian Calendar: Year starts March 25.  Every fourth year is a leap year.
  2478. Anno Domini:  Counting roughly from the birth of Jesus Christ.
  2479. Gregorian Calendar:  Multiples of 100 not divisible by 400 aren't leap years.
  2480. Counting the days between dates, with a simple formula for month numbers.
  2481. Age of the Moon, based on a mean synodic month of  29.530588853 days.
  2482. American names of full moons  are inherited from Algonquian tribes.
  2483. Blue Moon  is a term which has been defined in  two  different ways.
  2484. Easter Sunday is defined as the first Sunday after the Paschal full moon.
  2485. The Muslim Calendar:  The Islamic (Hijri) Calendar (AH = Anno Hegirae).
  2486. The Jewish Calendar:  An accurate lunisolar calendar, set down by Hillel II.
  2487. Zoroastrian Calendar.
  2488. The Zodiac:  Zodiacal signs and constellations.  Precession of equinoxes.
  2489. The Iranian Calendar.  Solar Hejri [SH]  or  Anno Persarum  [AP].
  2490. Enkutatash  (Sept. 11 or 12)  of Julian year  N  begins Ethiopian year  N-7.
  2491. The Chinese Calendar.
  2492. The Japanese Calendar.
  2493. Mayan System(s)Haab (365), Tzolkin (260), Round (18980), Long Count.
  2494. Indian Calendar:  The Sun goes through a zodiacal sign in a solar month.
  2495. Post-Gregorian CalendarsPainless  improvements to the secular calendar.

    Roman Numerals  (Archaic, Classic and Medieval)

  2496. Roman Numeration:  Ancient rules and medieval ones.
  2497. An easy conversion table  for numbers up to  9999.
  2498. Larger Numbers, like 18034...
  2499. Extending the Roman system.
  2500. The longest year so far,  in terms of Roman numerals.
  2501. IIS (or HS) is for sesterce (originally, 2½ asses, "unus et unus et semis").
  2502. Roman fractions.  A rudimentary  duodecimal  system.

    Humor

  2503. Standard jokes.  Smile!
  2504. Limericks.
  2505. Proper credit may not always be possible.
  2506. Trick questions can be legitimate ones.
  2507. Ignorance is bliss:  Why not read all that mathematical stuff  faster ?
  2508. Silly answers to funny questions.
  2509. Why did the chicken cross the road?  Scientific and other explanations.
  2510. Humorous or inspirational quotations  by famous scientists and others.
  2511. One great quote  to be translated into as many languages as possible.
  2512. Famous Last Words:  Proofs that the guesses of experts are just guesses.
  2513. Famous anecdotes.
  2514. Parodies, hoaxes, and practical jokes.
  2515. Omnia vulnerant, ultima necat:  The day of reckoning.
  2516. Funny Units:  A millihelen is the amount of beauty that launches one ship.
  2517. Funny Prefixes:  A lottagram is many grams; an electron is 0.91 lottogram.
  2518. The Lamppost Theory:  Only look where there's enough light.
  2519. Is it  insanity  or just a viable alternative to orthodoxy?
  2520. Anagrams:  Rearranging letters may reveal hidden meanings.   ;-)
  2521. Mnemonics:  Remembering things and/or making fun of them.
  2522. Acronyms:  Funny ones and/or alternate interpretations of serious ones.
  2523. Usenet Acronyms:  If you can't beat them, join them (and HF, LOL).

    Scientific Symbols and Icons

  2524. Adobe's Symbol font:  Endangered standard HTML mathematical symbols.
  2525. The equality symbol ( = ).  The "equal sign" dates back to the 16th century.
  2526. The double-harpoon symbol  denotes  chemical equilibrium.
  2527. Line components:  Vinculum, bar, solidus, virgule, slash, macron, etc.
  2528. The infinity symbol ( ¥ ) introduced in 1655 by John Wallis (1616-1703).
  2529. Transfinite numbers  and the many faces of mathematical infinity.
  2530. Chrevron symbols:  Intersection (highest below)  or  union (lowest above).
  2531. Disjoint union.  Square "U" or  inverted  p  symbol.
  2532. Blackboard boldDoublestruck  characters denote  sets of numbers.
  2533. The integration sign ( ò ) introduced by Leibniz at the dawn of Calculus.
  2534. Evaluation bar.  Difference betwen the values of an expression at two points.
  2535. The end-of-proof box (or tombstone) is called a halmos symbol  (QED).
  2536. Two "del" symbols  for partial derivatives, and  Ñ  for Hamilton's nabla.
  2537. A strange  lowercase  p  (Ã)  used only for Weierstrass  elliptic functions.
  2538. The rod of Asclepius:  Medicine and the 13th zodiacal constellation.
  2539. The Caduceus:  Scepter of Hermes, symbol of  commerce  (not medicine).
  2540. Tetractys:  Mystical Pythagorean symbol, "source of everflowing Nature".
  2541. The Borromean Rings: Three interwoven rings which are pairwise separate.
  2542. The Tai-Chi Mandala: The taiji (Yin-Yang) symbol was Bohr's coat-of-arms.
  2543. Dangerous-bend symbol:  Introduced by  Bourbaki,  popularized by  Knuth.  
     
     Gerard Michon

    Monographs and Complements  

  2544. About Zero.
  2545. Wilson's Theorem.
  2546. Counting Polyhedra:  A tally of polyhedra with n faces and k edges.
  2547. Sagan's number:  The number of stars, compared to earthly grains of sand.
  2548. The Sand Reckoner:  Archimedes fills the cosmos with grains of sand.  
     
     Gerard Michon

    Numericana Hall of Fame  

  2549. Numericana's list of distinguished Web authors in Science...
  2550. Giants of Science:  Towering characters in Science history.
  2551. Two Solvay conferences  helped define modern physics, in 1911 and 1927.
  2552. Physical Units: A tribute to the late physicist Richard P. Feynman.
  2553. The many faces of Nicolas Bourbaki  (b. January 14, 1935).
  2554. Lucien Refleu  (1920-2005).  "Papa" of 600 mathematicians.  [ In French ]
  2555. Taupe Laplace.  [ In French ].
  2556. Roger Apéry  (1916-1994)  and the irrationality of  z(3).
  2557. Hergé (1907-1983):  Tintin and the Science of Jules Verne (1828-1905).
  2558. Other biographies:  Dulong, Galois, Tannery, Vessiot, Drach, Glénisson...
  2559. Escutcheons of Science (Armorial):  Coats-of-arms of illustrious scientists.  
     Gerard Michon

    In-Depth Reviews of Great Products  

    Basic Stamp  from Parallax, Inc.

  2560. BASIC Stamp® HomeWork Board™ USB:  Review and first baby steps.
  2561. Decoding a digital PWM signal  with a low-pass filter.
  2562. Volume control  obtained by attenuating a PWM signal  before  filtering.
  2563. Using an LCD display  (HD44780)  without built-in PBASIC commands.
  2564. A keypad for independence:  Cutting off the umbilical USB cord.
  2565. Cheapest sonar sensor  uses two I/O pins  (where one would suffice).
  2566. The I2C bus.  Example:  Interface with a real-time clock  (RTC).

    Arduino Mictocontroller Boards.

  2567. Genuine Arduino starter kit:  All you need for a hands-on guided tour.
  2568. The Arduino Uno:  The unit which started it all  (now in  Revision 3 ).
  2569. Arduino Leonardo & Micro  don't  use separate processors for USB.
  2570. Chameleon:  An Arduino clone and a Parallax Propeller on one board.
  2571. Pro and cons of Arduino clones:  Avoid them as a  first  purchase.

    HP Prime Graphing Calculator.  Hewlett-Packard's flagship:

  2572. Buyer beware:  G8A92AA has wireless connectivity, NW80AA doesn't.
  2573. Setup:  Language, unique name, numerical and calendrical formats.
  2574. Connectivity.  How HP Prime calculators communicate with PCs.
  2575. HP StreamSmart.  Four-port data streamer capable of 5700 samples / s.
  2576. Hacking the HP Prime.  Possible DIY hardware modifications.
  2577. Two calculators in one.  A numerical workspace next to a separate CAS.
  2578. Reverse Polish Notation (RPN)  is only an option in the "Home" mode.
  2579. The RPN stack is more than a read-only record of previous entries & results.
  2580. Objet-oriented functions  behave according to the nature of their arguments.
  2581. CAS.  The  Computer Algebra System  of  Bernard Parisse.
  2582. AppsBlue icons  denote graphical applications with similar structures.
  2583. User functions.  A single-expression definition may involve  conditionals.
  2584. Programming,  using the  HP Prime Programming Language  (HP PPL).
  2585. User-defined apps.
  2586. Unit conversions.  The HP Prime features 167 basic units and 20 prefixes.
  2587. Constants of Nature.  23  built-in physical constants and many others.
  2588. Lists and list-processing primitives.  Not all list manipulations are possible.
  2589. Vectors and matrices.  Multidimensional linear algebra.
  2590. Polynomials.  Algebra on polynomials  &  special predefined polynomials.
  2591. Calendrical functions.  Dates are encoded as decimal numbers:  yyyy.mmdd
  2592. Special Functions.  Beyond trigonometric and hyperbolic functions.
  2593. Galois Fields.  An almost undocumented buggy feature of the HP Prime.
  2594. Easter Eggs.  "Visit Plot Gallery".
  2595. Kudos and Gripes.  Likes and Dislikes.  Deal-breakers.  Bug reports.
  2596. Fixed bugs and new kudos.

    Top HP Programmable Calculators:  HP-49g+ and HP-50g

  2597. Printer :  The  HP 82240B thermal printer  has been standard since 1989.
  2598. Modifier keys.  Lesser-used functions require several keystrokes.
  2599. Infinity:  Unsigned algebraic infinity and signed topological infinities.
  2600. Physical units:  A built-in feature inherited from the HP-28  (1986).
  2601. Bug reports:  Severe problems and minor ones.
  2602. Complex functions:  Complex values & arguments.  Complex variables.
  2603. RPL programming  ("Reverse Polish LISP")  originated with the HP-28.
  2604. Easter eggs:  Unofficial features, play Tetris® or  MineHunt.

    HP-35s:  Released on the 35th birthday of the  HP-35

  2605. Modifier keys.  Lesser-used functions require several keystrokes.
  2606. Reverse Polish Nptation (RPN)  was invented by  Jan Lukasiewicz  in 1924.
  2607. Unit conversions: °F/°C  |  HMS  |  °/rad  |  lb/kg  |  mi/km  |  in/cm  |  gal/L.
  2608. 40 physical constants  (and one mathematical constant)  in a single menu.
  2609. Bug reports:  Severe problems and minor ones.
  2610. Complex functions:  Complex values & arguments.  Complex variables.
  2611. Programming:  Recorded keystroke sequences.  Tests, loops & subroutines.

    Great TI Calculators:  TI-92, TI-92+, TI-89, Voyage 200

  2612. Modifier keys.  Lesser-used functions require several keystrokes.
  2613. Physical units:  A very nice afterthought, with a few rough edges.
  2614. Analytical functions  may present discontinuity  cliffs  in the complex realm.
  2615. Wrong!  0 to the 0th power  should  be 1.  ¥ and   shouldn't  be equal.
  2616. 68000 Assembly Programming:  A primer without the help of an assembler.
  2617. The clock frequency of your calculator  measured with 0.1% accuracy.
  2618. TI's BASIC.  A built-in interpreted language not designed for speed.
  2619. Pretty 2D algebraic displays  can only be edited in their 1D version.

    Texas-Instruments Scientific Calculator:  TI-36X Pro

  2620. The keypad:  One shift-key suffices with the introduction of  multi-tap.
  2621. Integer arithmetic.  Numbers with more than 6 digits cannot be factorized.
  2622. 20 pairs of unit conversions...  and not a single inaccuracy.  (That's rare!)
  2623. 20 physical constants  listed by name, with their units.  9 are numbered.
  2624. Bug reports:  From minor gripes to more severe flaws.

    Affordable Casio Calculators:  fx-991ex vs. fx-115es PLUS

  2625. Side-by-side comparison  of the fx-991EX and fx-991ES PLUS models.
  2626. fx-991ex.  The EX series is an improvement on the best-selling ES series.
  2627. History  of the "natural" Casio scientific calculator ES series.
  2628. Mode 4:  Hexadecimal or octal arithmetic on 32-bit integers.
  2629. Mode 7:  Tabulate a function  (or a pair of functions with "plus" version).
  2630. Scientific constants:  Consistent values recommended by  CODATA (2010).
  2631. Conversion factors between units:  A few inaccuracies  &  one typo.

    Sharp EL-W516 Calculator   (EL-W516x, EL-W516xBSL...)

  2632. The line of Sharp scientific calculators.  What the model numbers mean.
  2633. The basics.  Color-coded multiple functions.
  2634. Entering and exiting special modes.
  2635. Solving cubic equations.

    Canon's  F-792SGA  Calculator  (2013) :

  2636. The basics.
  2637. The good and the bad.

    Nikon  DX  Photography :

  2638. Nikon glossary.  Terms, symbols and abbreviations used by Nikon.
  2639. Evolution of Nikon DX Digital Cameras,  from the D50 to the D500.
  2640. Buyer's Guide  to all Nikon DX cameras:  D3x00, D5x00, D7x00 and D500.
  2641. Frames per second:  The D5500 can shoot at a top rate of  exactly  5  fps.
  2642. DX sensors:  23.46 x 15.64 mm (3.91m/p)  or  23.49 x 15.66 mm (4.2 m/p).
  2643. Back-button focusing.  A good  customization  to make on any camera.
  2644. White balance:  Compensating for the color of  incident light.
  2645. Setting up a focus trap.
  2646. Commander mode with SB-500 Speedlight,  using third-party flash units.
  2647. Remote control:  Infrared (ML-L3) or cable-release  (with timer).
  2648. GPS modules  communicate using the NMEA 0183 standard protocol.
  2649. External power.  Connector (AP-5a)  &  AC adapter (AH-5)  are separate.
  2650. Tripods & monopods:  Basic tripod, versatile  travel tripod,  hiking stick.
  2651. Camera straps.
  2652. Camera bags and cases.
  2653. A short history of Nikon lenses.
  2654. Automatic extension tubes  allow an ordinary lens to be used close-up.
  2655. Attach a lens backwards  to the camera body, or in front of another lens.
  2656. Low-light normal lens:  Nikon 35mm f/1.8G AF-S DX  (54 mm reach).
  2657. Fast portrait lens  Nikon 50mm f/1.8G AF-S  (77 mm DX reach).
  2658. Long macro  (130 mm DX reach):  Nikon 85mm f/3.5G AF-S DX ED VR.
  2659. Overview of other portrait lenses.  Long lenses with wide apertures.
  2660. Superzoom:  Nikon 18-300mm f/3.5-6.3G AF-S DX VR  (28-460 reach).
  2661. Kit lens and compact telephoto zoom tandem:  Nikon 18-55 and 55-300mm.
  2662. Telephoto zoom  AF-S Nikkor 200-500mm f/5.6E ED VR  (307-767mm).
  2663. Fast  (f/2.8)  Tokina wide zooms:  11-16mm (17-25) and 11-20mm (17-31).
  2664. Ultrawide  Samyang  fisheye lens:  Rokinon  8mm f/3.5 AE (for Nikon).
  2665. Bayonet hoods  don't interfere with  native  filters  (without step-up rings).
  2666. Telescope converter:  Turning any F-mount lens into a spotting scope.
  2667. Lens pinout:  Electrical connections between Nikon bodies and lenses.
  2668. Lens identifiers:  Database of F-Mount Nikon-compatible digital lenses.
  2669. EXIF:  The hidden data attached to every JPEG the camera makes.

    Mamiya 645 medium-format film photography  (1975).

  2670. Mamiya 645 1000S.  A complete vintage system on eBay.
  2671. Mamiya-Sekor C lenses:  Interchangeable lenses for the M645.
  2672. Battery:  Silver-oxide is usually better than lithium.  Alkaline isn't so good.

    Eastman-Kodak's  No.2 Brownie Camera  (1901-1935).

  2673. Meniscus lens.  Wollaston landscape lens.
  2674. No. 2  Brownie, Model F.   The first all-metal Brownie  (1924).

    Photographic Film:  The soul of the twentieth century.

  2675. Ongoing legacy of analog photography:  Film is dead, long live Film.
  2676. What makes silver so special.  The miraculous chemistry of silver.
  2677. The latent image.  It's true nature remained a mystery for decades.
  2678. The magic of photographic emulsions.  How silver captures light.
  2679. C-41 film processing and proof printing  at different professional labs.
  2680. "Develop and Scan" services  kill the advantage of medium-format film.
  2681. Film scanner:  A  $170  flatbed capable of scanning 120-film at 9600 dpi.
  2682. Black-and-white film:  Ilford, Kodak, Agfa  (Rollei)  and  one  Fuji offer.
  2683. Rollei infrared film:  Processing film based on a flimsy polyester base.
  2684. Processing black-and-white film  at home.  Lots of room for creativity.
  2685. Paterson System 4.  Tanks, self-loading reels and  force film washer.
  2686. Developer.  The most critical bath in photographic processing.
  2687. Stop-bath.  An acidic stop-bath puts an abrupt end to the developer's action.
  2688. The fixer  stabilizes the image by dissolving unused light-sensitive material.
  2689. Washing  with  (bisulfite)  salts makes a fresh-water rinse more efficient.
  2690. Spotless drying  can be achieved with a wetting agent in the final rinse.
  2691. History of natural-color reproduction:  The path to modern color films.
  2692. Color negative films:  Kodacolor, Ektar, Agfacolor, Fujicolor.
  2693. C-41 processing of color negatives  is best left to professional machines.
  2694. Color reversal films (slides).  Kodachrome (K-14).  Ektachrome (E-6).

    Cinematography  &  Digital Video,  with the Lumix  GH5.

  2695. Movies & Video.  Capturing motion with a sequence of images.
  2696. Video formats, resolution, color depth and bit rates.
  2697. Video Lighting:  Color balance, power.  LED panel, COB and HMI.
  2698. Camera support gear:  Monopods and tripods.
  2699. 3-axes motorized gimbal mount.
  2700. Panasonic Lumix hybrids cameras.  The GH5 offers great video features.
  2701. Firmware updates and unlocks.  GH5 camera, lenses and XLR audio adapter.
  2702. Neutral density (ND) filters  are essential when shooting video.
  2703. Olympus M.Zuiko Digital ED 7-14mm f/2.8  Best MFT wide-zoom lens.
  2704. Panasonic 8-18mm f:2.8-4.0.  Best MFT lens of 2017, for many reviewers.
  2705. Panasonic 12-60mm f:2.8-4.0.  Most popular kit lens for the GH5.
  2706. Lumix G Leica DG Nocticron 42.5mm f:1.2.  Best lens for still portraits.
  2707. Panasonic 50-200mm f:2.8-4.0.  Best telephoto zoom for the GH5.
  2708. Panasonic 100-400mm f:4.0-6.3.  Super-telephoto zoom.  800 mm  reach.
  2709. Proper cinema lenses (no focus breathing).  Veydra  mini-primes.
  2710. Flash strobes.  Some TTL flash units for shooting stills with the GH5.
  2711. Customizing a GH5 camera cage  with the SmallRig system.
  2712. DIY no-stich hand strap  (with accessory pouch)  for camera cages.
  2713. Micro four-thirds (MFT or M43).  Open standard for mirrorless cameras.
  2714. Adapters & converters allow MFT cameras to use reflex-mount lenses.
  2715. Serial Digital Interface (SDI).  Coaxial cables and locking connectors.
  2716. High-Definition Multimedia Interface (HDMI).  The consumer standard.
  2717. Atomos recorders/monitorsShogun InfernoNinja InfernoNinja V.
  2718. Monitors and colorimeters  to deliver accurate color reproduction.
  2719. CODEC standards.  COmpression and DECpmpression of video signals.
  2720. Look-Up Table (LUT).  The ultimate customization of color information.
  2721. Editing & post-production.  Modifying clips and putting them together.
  2722. Montage.
  2723. Tips  from successful YouTubers.
  2724. Teleprompters.  The key to smooth on-camera speech delivery.

    Recording Sound  for Video  (48 kHz  /  24-bit)

  2725. Microphones:  A brief summary of our dedicated page on the topic.
  2726. Evolution of sound recording.  From soot, tinfoil and wax to 24-bit audio.
  2727. Rooms acoustics.  Suppressing outside noise.  Trapping unwanted reverb.
  2728. Reverbs and delays.  Natural and synthetic reverberation and echoes.
  2729. Pop filters.  Pop screens suppress  plosives  and shield against spit...
  2730. Microphone stands & booms.  The most common thread mount is  5/8''-27.
  2731. Audio connectors:  Phone jacks  (¼'', 3.5mm, 2.5mm)  and balanced XLR.
  2732. Microphone cable:  Balanced line formed by a  shielded  twisted pair.
  2733. Volume:  Sound level,  normalized to current broadcast standards.
  2734. Equalization (EQ).  Adjusting the frequency response for fidelity or effect.
  2735. AGC,  limiters and compressors:  Best use of a limited dynamic range.
  2736. Preamplifiers.  Converting a microphone output into a usable line signal.
  2737. Analog  low-pass filtering  is paramount before digitization of any signal.
  2738. Analog-to-digital conversion (ADC).
  2739. Digital-to-analog conversion (DAC).
  2740. Generation loss.  Signal degradation due to each ADC/DAC pair.
  2741. Digital wireless systems:  Sennheiser,  Røde,  Sony,  Saramonic,  Azden.
  2742. The DMW-XLR1  provides the GH5 camera with two 24-bit audio channels.
  2743. Analog mixer.  Mixing sound from several audio sources in real-time.
  2744. Direct insertion (DI) boxes  intercept a clean signal between guitar and amp.
  2745. Audio impedance transformers.  Step-up to use a mic with a guitar amp.
  2746. Match  an output impedance with a load equal to its  complex conjugate.
  2747. Handy audio recorders:  Zoom H1, H1n, H2n, H4n Pro, H5, H6  (and F1).
  2748. Zoom H1 ultra-portable recorder:  Single-channel and built-in stereo mic.
  2749. Zoom H5 four-channel recorder:  XLR inputs  &  interchangeable capsules.
  2750. Audio interfaces  between various audio signals and a digital computer.
  2751. The Art of Slating:  Clapboard conventions and etiquette.
  2752. Soundtrack.  Affordable licensing of music for amateurs.
  2753. Foley,  sound effects and sound design.
  2754. Voice-over.  Crafting spoken words off-camera.  Dog-clicker editing.
  2755. Digital audio workstation (DAW).  Putting it all together...

    Microphones :  Fundamental Issues and Buyer's Guide

  2756. Sound  What pressure waves entail.  Thermodynamics of acoustics.
  2757. Classifying microphones  according to which physical quantity they exploit.
  2758. Unified theory  of inductive (dynamic) and condenser microphones.
  2759. Noise-floor:  What's left when the interesting stuff is gone.
  2760. Microphone sensitivity (mV/Pa):  voltage  output  to sound pressure  input.
  2761. Pickup patterns:  Omnidirectional,  figure-8,  cardioid,  and  beyond...
  2762. Dual-diaphragm microphones  allow switchable or variable pickup patterns.
  2763. Compound microphones  with adjustable frequency response..
  2764. Calibrated measurement microphones.  Testing acoustics and audio gear.
  2765. Attenuation pad switch  allows a microphone to record louder sounds.
  2766. High-pass filter (HPF).  A switchable option built into many microphones.
  2767. Characteristics of full-size wired microphones.  Capacitive or inductive.
  2768. Acoustic properties of large diaphragms.  Resonances and pickup patterns.
  2769. Large-diaphragm condenser microphones (LDC).  Studio microphones.
  2770. Dynamic microphones.  Rugged stage microphones with limited bandwidth.
  2771. Ribbon microphones.  Special dynamic type,  with output transformers.
  2772. Small-diaphragm pencil microphones  are often available in matched pairs.
  2773. Shotgun microphones.  Highly-directive narrow condenser microphones.
  2774. Lavalier microphones (lapel mics)  isolate the speaker from ambient sound.

Note: The above numbering may change, don't use it for reference purposes.

Noted   Numericana fans  (and/or contributors)  in alphabetical order:

Guest Authors:

Public-Domain Texts:

border
border
 
border
border
 Gerard Michon  Gerard Michon
 Numericana 
 (UCLA Bruins)

Pages that quote Numericana's "Final Answers"
2018, 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001

Many other links are archived.

Please, let us know about other links to this site not yet included in our list.
border
border
visits since Oct. 10, 2000 Valid HTML
 (c) Copyright 2000-2023, Gerard P. Michon, Ph.D.