home | index | units | counting | geometry | algebra | trigonometry | calculus | functions
analysis | sets & logic | number theory | recreational | misc | nomenclature & history | physics
 border

Final Answers
© 2000-2023   Gérard P. Michon, Ph.D.

Connes' Geometry
Noncommutative Geometry

The use of noncommutative geometry  (NCG)
as a tool for constructing particle physics models
originated in the 1990s.
  Matilde Marcolli  (2017)
 Michon  

Related articles on this site:

Related Links (Outside this Site)

Alain Connes' personal website   |   Wikipedia page
The flashes of insight never came for free.  Interview  (December 2010).
 
Very Basic NCG  by  Masoud Khalkhali  (pdf, 104 pp).
Noncommutative Geometry  by  Alain Connes  (pdf, 654 pp, 1994).
NCG, Year 2000  by  Alain Connes  (67 pp, 2000-11-23).
NCG, the spectral standpoint  by  Alain Connes  (56 pp, 2019-10-23).
 
Noncommutative Geometry:  Overview at nLab.
Noncommutative Geometry:  Blog / Forum
What's the significance of NCG in mathematics?  MathOverflow  (2012-02-11).

Videos :

Noncommutative geometry and particle physics (8:24)  by  Kevin McSherry  (Radboud University, 2016-04-12).
A rapid tour through NCG (1:02:23)  by  Nigel Higson  (ESI, 2019-02-26).

Videos in French :

Non-commutativité, moteur du temps (6:46)  Etienne Klein  (2014-05-21).
Discours introductif aux travaux d'Alain Connes (19:01)  Etienne Klein  (2018).
Géométrie non-commutative  (23:02, 15:15)  by  J-P. Luminet  (2020-05-09/11).

Videos of Alain Connes :

Non-commutative geometry (53:54)  Visions in Mathematics  (1999-08-26).
Interview (1:05:59)  by  Stéphane Dugowson  &  Anatole Khélif  (2014-02-05).
Face à la réalité mathématique (7:03)  Collège de France  (2014).
Quanta of Geometry (1:38:01)  ESI  (2015-03-10).
The Arithmetic Site (59:04, 54:14)  ESI  (2015-03-11).
Quantum Emergence of Time (58:37)  at IHES  (2015-04-09).
Pensée en mouvement (French, 1:55:02)  Université PSL  (2015-11-12).
Géométrie non-commutative & physique (1:18:17) Guillaume Faye, IAP (2015).
Why 4 dimensions?  QG & NCG (1:54:49)  at IHES  (2017-10-24/27).
Entropy and the spectral action (51:09)  at IHES  (2017-12-24).
Parcours d'un mathématicien (1:25:10)  SAPT  (2018-12-17).
On the Fine-Structure of Space-Time (1:03:36)  at IHES  (2019-02-27).

Noncommutative geometry

 
border
border

On Alain Connes' Noncommutative Geometry

"It is quite conceivable that the metric relations of space in the infinitely small do not conform to the hypotheses of geometry."     Bernhard Riemann  (1854)
 
"Le point matériel était une abstraction mathématique dont nous avions pris l'habitude et à laquelle nous avions fini par attribuer une réalité physique.  C'est encore une illusion que nous devons abandonner..."     Elie Cartan  (1931)

 David Hilbert
David Hilbert
 

(2020-05-12)   Hilbert spaces   (David Hilbert, 1909)

 Come back later, we're
 still working on this one...

Hilbert spaces   |   Compact operators   |   Spectral theorY   |   David Hilbert (1862-1943)
 
Erhard Schmidt (1876-1959)   |   Frederic Riesz (1880-1956)   |   Marcel Riesz (1886-1969)

 Johnny von Neumann
Johnny von Neumann
 

 Von Neumann's coat-of-arms (2020-05-03)   Von Neumann Algebras  (1929)
At first,  rings of operators  on Hilbert spaces.

When  Dirac  first formalized quantum theory,  he posited that the ultimate  state  of reality was a vector belonging to an abstract  ad hoc  Hilbert space  called the space of  kets  (or, equivalently, the space of the  bra  covectors).

However,  a ket isn't directly accessible.  All we can do is apply to it an  operator  associated to an observable physical quantity.  Doing so transforms the ket into an eigenvector of that operator,  whose associated eigenvalue is construed to be the result of a measurement  (it's always a real quantity if we only use  hermitian operators,  henceforth called  observables,  for short).

The original motivation was to understand how  hermitian operators  (quantum observables)  act on a system composed of several subsytems  (call that  entanglement  if you must).

C* Algebras   (Gelfand & Naimark,  1943) :

By definition,  a  C* algebra  (pronounced "C star")  is a  Banach algebra  (i.e.,  a  Banach space  endowed with the added structure of an  algebra)  on which a  conjugation  is an involution extending the conjugation on the scalar field  (using the same postfixed star  "*"  notation):

  • X**   =   X     (i.e.,  conjugation is an  involution).
  • (k X)*   =   k* X*   º   X* k*     (antilinearity).
  • (X + Y)*   =   X* + Y*     (additive homomorphism).
  • (X Y)*   =   Y* X*     (multiplicative antihomomorphism).

Cyclic and separating vector   |   Gelfand-Naimark-Segal construction (GNS)


(2020-05-08)   Compact operators

A linear operator between normed spaces is continuous iff it's bounded.

A compact operator is a linear operator for which the image of any bounded subset is precompact  (i.e.,  its closure is compact).

 Come back later, we're
 still working on this one...

Bounded operator   |   Compact operator   |   Finite-rank operator
Spectrum   |   Spectral theory of compact operators   |   Spectral theory of normal C*-algebras

 Jacques Dixmier
Jacques Dixmier
 

(2020-05-15)   Dixmier Trace   (1966)

 Come back later, we're
 still working on this one...

Connes' Dictionary
Space XAlgebra A
Real Variable  xmSelf-adjoint Operator
Infinitesimal form  dxCompact Operator  e
Integralò e   =   Coefficient of
Log L  in  TrL(e)
Infinitesimal displacement
(gmn dxm dxn ) ½
Fermion propagator  D-1

Dixmier trace   |   Dixmier mapping   |   Jacques Dixmier (1924-)

 Minoru Tomita
Minoru Tomita
 

(2020-05-03)   Tomita-Takesaki theory (1967)
Introduced by  Minoru Tomita (1924-2015).

Tomita (1924-2015)  had been hearing-impaired since the age of  2  and his theory remained obscure until it was exposed in a 1970 book based on lecture notes compiled by his student  Masamichi Takesaki (1933-).

 Masamichi Takesaki
Masamichi Takesaki
 
 

By sheer luck,  young  Alain Connes  (still utterly ignorant of the subject)  bought a copy form the Princeton bookstore to occupy a five-day train journey to a conference in Seattle.  Not knowing that Takesaki would be one of the speakers.  Connes chose to attend all the lectures given by Takesaki...  That launched his career with work leading to his Fields medal in 1982.

Type III von Neumann Algebras :

 Come back later, we're
 still working on this one...

Von Neumann Algebras (1926)   |   C*-algebra (1943)   |   Gelfand-Naimark theorem (1943)
John von Neumann (1903-1957)   |   Francis J. Murray (1911-1996)
 
Connes embedding problem   |   Tsirelson's problem   |   Boris Tsirelson (1950-2020)

 Denys Sullivan
Denis Sullivan (1941-)
 

(2020-05-04)   Foliations   (French:  feuilletage)

 Come back later, we're
 still working on this one...

Foliations   |   Sheaves   |   Vector bundles   |   Fiber bundles

 Henri Moscovici
Henri Moscovici
 

(2020-05-11)   Noncommutative Geometry

 Come back later, we're
 still working on this one...

Ali H. Chamseddine (1953-)  Ph.D. 1976.   |   Guoliang Yu (1963-)  Ph.D. 1991
 
Noncommutative geometry (1:01:10)  by  Aleksandar Zejak (2013-03-11).

 Paul Baum & Alain Connes
Paul Baum  (left)  &  Alain Connes  (2004)
 

(2020-05-10)   Baum-Connes conjecture
By  Paul Baum  &  Alain Connes  (1982).

 Come back later, we're
 still working on this one...

Baum-Connes conhecture (1982)   |   Paul Baum  (1936-; PhD 1963)

 Jean-Benoit Bost
Jean-Benoît Bost
 

(2020-05-14)   Bost-Connes Systems   (1995)

 Come back later, we're
 still working on this one...

Bost-Connes Systems (1995)   |   Jean-Benoît Bost  (1961-).

 Caterina Consani
Katia Consani
 

(2020-05-03)   Connes-Consani Plane Connection
Prime numbers  and the  hyperring of adèle classes.

 Come back later, we're
 still working on this one...

The hyperring of adèle classes (Connes & Consani, 2010)
Schemes over F1 and Zeta Functions   |   Katia Consani (1963-) PhD 1993 & 1996
 
The Connes-Consani plane connection (2016)   |   Koen Thas (1977-)
 
What are hypergroups and hyperrings good for?  by  David Corfield  (MathOverflow, 2010-07-02).
 
The Arithmetic Site (Consani, ConnesHSM  (2014-11-25).

 Caterina Consani
Katia Consani
 

(2020-06-10)   The Arithmetic Site

 Come back later, we're
 still working on this one...

The Arithmetic Site (Consani, ConnesHSM  (2014-11-25).
 
The Arithmetic Site (59:04, 54:14)  by  Alain Connes  (ESI, March 2015).

border
border
visits since May 3, 2020
 (c) Copyright 2000-2023, Gerard P. Michon, Ph.D.