home | index | units | counting | geometry | algebra | trigonometry | calculus | functions
analysis | sets & logic | number theory | recreational | misc | nomenclature & history | physics

Final Answers
© 2000-2021   Gérard P. Michon, Ph.D.

Infinite Products
and Pole Expansions

When I wrote this, only God and I understood what I was doing.
Now,  only God knows.

Karl Weierstrass  (1815-1897)

Related articles on this site:

Related Links (Outside this Site)

Infinite product in nLab
 
Infinite products  by  Yury Ustinovskiy  (2021-05-17).
 
Infinite products and partial fractions  by  Paul Loya
and  Dikran Karagueuzian. (SUNY Binghamton, Math 478, Fall 2005).
 
border
border

Convergence of Infinite Products
Expanding meromorphic functions about their zeros or poles

To any product of linear terms corresponds a pole expansion of its  logarithmic derivative.  So,  it's good to discuss both types of expansions together.


(2021-07-08)   Wallis product   (Wallis, 1655)
A result obtained by  John Wallis (1619-1703)  from  Wallis integrals:
p   =   2 2 4 4 6 6 8 8   =   Õ
k ≥ 1
    2k   2k    =   Õ
k ≥ 1
    1 
Vinculum Vinculum . Vinculum . Vinculum . Vinculum . Vinculum . Vinculum . Vinculum . Vinculum . Dot Dot Dot Vinculum . Vinculum Vinculum
2 1 3 3 5 5 7 7 9 2k-1 2k+1 1-1/4k2

Wallis integrals (Numericana)   |   Wallis product (1655)   |   John Wallis (1616-1703)
 
Wallis product formula (5:42)  by  Jens Fehlau  (Flammable Maths, 2019-05-28).
The Wallis product for pi, proved geometrically (25:26)  by  Grant Sanderson (3blue1brown, 2018-04-20).
Amazing formula for pi: the Wallis product (11:56)  by  Presh Talwalkar  (MindYourDecisions, 2016-10-12).


(2021-07-10)   Euler's product formula for sine.
Now best expressed with the  normalized sinc function  (sine cardinal).

sinc  z    =    sin p z    =    Õ
k ≥ 1
 ( 1 - z2/k2 )
Vinculum
p z

Note that the  Wallis product  is readily obtained from this,  with  z = ½.

The  unnormalized sine cardinal  is preferrably called  sampling function  and abbreviated   Sa x = (sin x)/x.  At zero,  the value of either flavor of sine cardinal is defined by continuity to be  1,  which makes it an  entire function.

Proof :  

 Come back later, we're
 still working on this one...

Euler's product formula for sine  by  Robin Whitty (Theorem of the Day #247).
 
Infinite Factorization of sin(x)  (Mathematics StackExchange, 2013-02-31).
 
Euler's sine product from Mittag-Leffler's Pole Expansion of cotg (11:36)  by  Jens Fehlau  (2019-04-29).


(2021-07-18)   Factorization of the reciprocal gamma function.
The reciprocal gamma function is an entire  function.

As such,  it's often used as a  precursor  in the numerical computation of the  Gamma function.

g (z)    =    1    =   z  exp ( g z )   Õ
k ≥ 1
 ( 1 + z / k ) exp ( -z/k )
Vinculum
G (z)

g  is the  Euler-Mascheroni constant  (0.57721566490153286060651209...).

 Come back later, we're
 still working on this one...

Reciprocal gamma function   |   Karl Weierstrass (1815-1897)


(2021-07-12)   Weierstrass factorization theorem   (1876)
Factorization of an entire  function.

 Come back later, we're
 still working on this one...

Weierstrass factorization theorem   |   Karl Weierstrass (1815-1897)
 
Genus and Order of an Entire Function  by  Bob Gardner.


(2021-07-17)   Euler's Partial Fraction Expansion of Cotangent
The  cotangent  function may be abbreviated  ctgcotgcotan  or  cot.

p  cotg p z     =     1   +   å
k ≥ 1
 (  1  +  1  )
Vinculum Vinculum Vinculum
zz - kz + k

That's the  logarithmic derivative  of   Euler's factorization  of  sin p x.

How did Euler prove the partial-fraction expaansion of cotangent  (Math Stack Exchange, 2016-07-05).
 
Euler's proof and Herglotz's Proof  by  Daniel Glasscock   |   Gustav Herglotz (1881-1953; PhD 1900).
 
Cotangent's Expansion Derivation using Fourier series (14:35)  by  Jens Fehlau  (2019-04-25).


(2021-07-17)   Mittag-Leffler's expansion theorem   (1876)
Expanding a  meromorphic function  about its poles.

 Come back later, we're
 still working on this one...

Mittag-Leffler's theorem (1876)   |   Proof   |   Gösta Mittag-Leffler (1846-1927)
 
Pole expansion using Mittag-Leffler's theorem  (Math Stack Exchange, 2019-10-23).


(2021-07-18)   Pole expansions of some meromorphic functions

cotg z     =     cos z     =     1   +   å
k ≥ 1
 (  1  +  1  )
Vinculum Vinculum Vinculum Vinculum
sin z zz - k p z + k p

Replace  z  by  p/2-z  to obtain:

tg z   =     sin z     =     1   +   å
k ≥ 1
 (  1  -  1  )
Vinculum Vinculum Vinculum Vinculum
cos z p/2 - z (k+½)p - z (k-½)p + z

Let's pair the successive terms differently  without  affecting the sum:

 Come back later, we're
 still working on this one...

Partial fraction decomposition
 
Mittag-Leffler's theorem (1876)   |   Gösta Mittag-Leffler (1846-1927)

border
border
visits since July 10, 2021
 (c) Copyright 2000-2021, Gerard P. Michon, Ph.D.