home | index | units | counting | geometry | algebra | trigonometry & functions | calculus
analysis | sets & logic | number theory | recreational | misc | nomenclature & history | physics

Final Answers
© 2000-2021   Gérard P. Michon, Ph.D.

Partial Differential Equations  (PDE)

The laws of physics are always expressed
in the language of differential equations.

 Steven Strogatz  (1959-)
 Michon
 
 border
 border
 border

See also:

Related Links (Outside this Site)

SOS Math - Differential Equations
Partial Differential Equations  by  Eric Weisstein
 
Wikipedia :   Differential Equations   |   Partial Differential Equations   |   Cauchy-Lipschitz theorem
Dirichlet boundary conditions   |   Neumann boundary conditions   |   Robin boundary conditions
 
border
border

Partial Differential Equations  (PDE)


(2014-11-22)   Wave Equation  Pierre-Simon Laplace 
 (1749-1827)  Jean-le-Rond D'Alembert 
 (1717-1783)
Propagation of waves.

The amplitude U of a wave of  celerity  V obeys the  wave equation :

   2 U     =     2 U   +   2 U   +   2 U  
Vinculum Vinculum Vinculum Vinculum Vinculum
V 2 t 2 x 2 y 2 z 2
 
 =DU [D is the Laplacian operator]

 Come back later, we're
 still working on this one...

Wave_equation

 Pierre-Simon Laplace (1749-1827)
(2021-07-27)   Laplace equation  &  harmonic functions
Stationary  solutions of the  wave equation.

In three dimensions,  the  Laplace equation  reads:

0    =     2 U   +   2 U   +   2 U  
Vinculum Vinculum Vinculum
x 2 y 2 z 2
 
 =DU [D is the Laplacian operator]

Because of the  Cauchy-Riemann equationa,  the real and imaginary parts of any  analytic function  are two-dimensional harmonic functions.  Another two-dimensional harmonic function is:

Log  ( x2 + y2 )

It can be construed as a special case of the previous kind as  (twice)  the real part of the following  multivalued  function  of a nonzero complex variable,  whose ambiguity resides only in the imaginary part  (k is any integer):

Log (x+iy)   =   ½ Log (x2 + y2)  +  [ Arg (x+iy) + 2kp ] i

Mean-value property

The value of an harmonic function at the center of a ball equal the mean-value of that function over the surface of the ball.

 Come back later, we're
 still working on this one...

 Edward Nelson (1932-2014)

Liouville's theorem for harmonic functions

Edward Nelson (1932-2014)  observed that this is a simple consequence of the above  mean-value property:

Suppose  U  is a  bounded  harmonic function.  Let A and B be two disctinct points and consider two balls of radius  R  centered on them.

 Come back later, we're
 still working on this one...

Laplace equation   |   Harmonic functions


(2014-11-22)   Heat Equation  Joseph Fourier 
 (1768-1830)
Propagation of heat in a solid.

 Come back later, we're
 still working on this one...

Les fabuleux théorèmes de Nash (1:32:38)  by  Cedric Vilani (2010).
 
Solving the heat equation (14:12)  by  Grant Sanderson  (2019-06-16).


(2015-18-22)   Schrödinger Equation   (Schrödinger, 1926)
Fundamental equation of nonrelativistic Quantum Mechanics.

 Come back later, we're
 still working on this one...

Schrödinger equation   |   Erwin Schrödinger (1887-1961)


(2016-01-24)   Korteweg - de Vries Equation   (KdV, 1895)
An exactly-solvable model for  solitons  (1834)  in shallow waters.

Solitons was first observed in 1834 by John Scott Russell (1808-1882).  In August 1834, ke noticed...

 Come back later, we're
 still working on this one...

MathWorld :   Korteweg-de Vries Equation   |   KdV-Burgers Equation
 
Wikipedia :   KdV equation   |   Diederik Korteweg (1848-1941)   |   Gustav de Vries (1866-1934)

border
border
visits since November 22, 2014
 (c) Copyright 2000-2021, Gerard P. Michon, Ph.D.