home | index | units | counting | geometry | algebra | trigonometry & functions | calculus
analysis | sets & logic | number theory | recreational | misc | nomenclature & history | physics

Final Answers
© 2000-2023   Gérard P. Michon, Ph.D.

Manifolds

Manifolds are a bit like pornography:
 hard to define, but you know one when you see one.

Shmuel Weinberger (1963- )
   Michon
 
 border
 border
 border

Related articles on this site:

Related Links (Outside this Site)

Category Theory   Stanford Encyclopedia of Philosophy  (1996, 2014).
CT: An abstact setting for analogy and comparison   R. Brown & T.Porter.
Categorification  by  John C. Baez  (1998).
Categories, Quantization, and Much More  by John Baez  (April 2006).
The n-Category Café  by  John Baez, David Corfield, Alexander Hoffnung et al.
The  n-categorical point of view  lives on at  nLab.

Wikipedia :   Manifold   |   History of manifolds and varieties   |   Orbifold

Videos :  The Mystery of 3-Manifolds (2010)  Bill Thurston (1946-2012)
What is a Manifold?  (Paris, 2010)  by  Misha Gromov (1943-).
 
Vector Bundles, Gauge theory (1:33:28)  K Raviteja  (2015-08-27).
 
What is a Manifold?  by  Bijan Haney (2016)   1: Point-Set Topology2: Topological Concepts3: Separation4: Countability & Continuity5: Compactness & Connectedness6: Metrizable Manifolds7: Differentiable Manifolds8: Diffeomorphisms9: Tangent Space10: Basis Vectors11: Cotangent Space12: Fiber Bundles14: Tangent Bundle15: Quotient Spaces16: Moebius Strip17: Metric Spaces18: Homotopy

 
border
border

Topological and Smooth Manifolds


(2014-12-23)   Manifold   (French:  variété)  and  homotopy type.
Topological, Piecewise-linear or Smooth Manifolds.

topological manifold  of dimension  n  is a  metrizable space  (a second-countable  Hausdorff space)  locally homeomorphic to  Rn  (or an  open ball  thereof).

Parametrization, chart, atlas.

Embedding theorem :   Every manifold of dimension  n  can be  embedded  in  R2n+1

 Come back later, we're
 still working on this one...

Topological manifold   |   Differentiable manifold
 
Whitney embedding theorem   |   Hassler Whitney (1907-1989)
 
Topological manifold (18:03)  and  smooth manifold (27:09)  by  Harish Seshadri  (2017-08-29).
 
"Differential Topology"  (AMS Lectures at Cornell, Aug. 30 - Sept. 2, 1965)  by  John W. Milnor  (1931-)
1 :  Definitions.  Mappings.   2 :  Poincaré conjecture.  Tangent bundles.   3 :  Grassmann manifold.
 
Differentiable Manifolds (1:43:11)  by  Frederic P. Schuller  (#7, 2016-03-12).


(2020-10-03)   Direct sum of two manifolds
The dimension of the sum is the sum of the dimensions.

 Come back later, we're
 still working on this one...

Diffeomorphism   |   Smoothness classes


(2020-10-03)   Connected sum of two manifolds   (fiber sum).
Cut off two identical submanifolds and glue the matching boundaries.

One important special case is the connected sum of manifolds of identical dimensions, off a given pair of points.  This is done by cutting off a small enough manifold homeomorphic to a ball around both points and gluing together the two boundaries so created.

 Come back later, we're
 still working on this one...

Connected sums   |   Disc theorem (1960)   |   Richard S. Palais (1931-)


(2020-09-15)   Diffeomorphism

 Come back later, we're
 still working on this one...

Diffeomorphism   |   Smoothness classes


(2020-10-05)   Tangent verctors and  tangent bundle  thereof.

A smooth curve  g  in a smooth manifold    M  is,  by definition,  a  C¥  function from  R  (or any  interval  thereof)  to  M.

What's traditionally called the  tangent vector  to  g  at point  g  at point  p = g  at point  g(0)  is best defined as the  linear form  (formally called the directional derivative operator along  g  at point p)  which maps any form of  f  of  C¥(M to the scalar  ( f o g)'(0).

 Come back later, we're
 still working on this one...

Two curves which have the same tangent vector at a given point are said to be tangent to each other.

Diffeomorphism   |   Smoothness classes
 
Differential structures (1:44:14)  by  Frederic P. Schuller  (Lec 09, 2015-09-21).


(2020-09-27)   Pushforward:  Total derivative  of a smooth map.
The  dual  operation is a  pullback.

 Come back later, we're
 still working on this one...

Pushforward   |   Pullback   |   Differential forms   |   Partial derivatives
 
Manifolds, Derivations & Push-Forwards (59:50)  by  James Cook  (2015-11-09).


(2020-10-03)   Toppological Manifolds and Bundles.

Loosely speaking, a topological manifold is a topological space which is  locally  homeomorphic to a d-dmensional Euclideam space.

Formally,  a  paracompact  Hausdorff space  M  is a d-dimensional (topolological) manifold when every point  x  of  M  possesses an  open neighborhood  homeomorphic  to a subset of  Rd.

 Come back later, we're
 still working on this one...

Differential forms   |   Partial derivatives
 
Topological manifolds and manifold bundles (1:49:17)  by  Frederic Schuller  (Lec 06, 2015-09-21).


(2020-09-15)   Immersion  of one differentiable manifold into another:
Differentiable map whose derivative is everywhere  injective.

 Come back later, we're
 still working on this one...

Immersion


(2020-09-15)   Embedding  of one differentiable manifold into another:
An embedding is an  injective  immersion  (i.e., no "self-intersections").

 Come back later, we're
 still working on this one...

Nash Embedding Theorem :

A compact m-dimensional Riemannian manifold can be smoothly embedded  isometrically  in a Euclidean space of  (3m+11)m/2  dimensions.

Embedding
 
Difference between  immersion  and  embedding.  (StackExchange, 2011-09-28).
 
Nash Embedding Theorem (13:41)  by  Edward T. Crane  (Numberphile, 2015-05-31)
Embedding a Torus (12:57)  by  James Grime  (Numberphile, 2015-05-31)

border
border
visits since December 24, 2014
 (c) Copyright 2000-2023, Gerard P. Michon, Ph.D.