home | index | units | counting | geometry | algebra | trigonometry & functions | calculus
analysis | sets & logic | number theory | recreational | misc | nomenclature & history | physics
  J. Henri Poincare 
 (1854-1912)

Final Answers
© 2000-2021   Gérard P. Michon, Ph.D.

Chaos  Theory

 Michon
 

Related articles:

Related Links (Outside this Site)

What is Chaos Theory?   by  The Fractal Foundation
 
Wikipedia :   Chaos Theory   |   Strange attractor

Videos

The Strange New Science of Chaos (57:34)  Nova S16 #3  (PBS, 1989-01-31).
Why 4.669 is famous (18:54)  by  Ben Sparks  (Numberphile, 2017-01-16).
The Butterfly Effect (15:04)  by  Thoughty2  (2018-01-11).
 
border
border

Chaos Theory


(2018-04-02)   Long-Term Stability of the Solar System

 Come back later, we're
 still working on this one...

Victor Puiseux (1820-1883)   |   Spiru Haret (1851-1912)
J. Henri Poincaré (1854-1912; X1873)   |   J.E. Littlewood (1885-1977)   |   Mary Cartwright (1900-1998)
Andrey Kolmogorov (1903-1987)   |   KAM Theorem (1963)   |   Gabriella Pinzari (1966-)


(2018-04-01)   The Butterfly Effect   (Edward N. Lorenz, 1962)
The chaotic nature of mereorology.

 Come back later, we're
 still working on this one...

Butterfly effect  |  Henri Poincaré (1854-1912)  |  Norbert Wiener (1894-1964)  |  Edward Lorenz (1917-2008)
 
The Strange New Science of Chaos (57:34)  Nova Season 16, Episode 3  (PBS, 1989-01-31).
 
Chaos: The Science of the Butterfly Effect (12:50)  by  Derek Muller  (Veritasium, 2019-12-06).


(2003-07-30)     Feigenbaum Constants   (Mitchell J. Feigenbaum,  1975)
d =   4.669201609102990671853203820466201617258185577475769-
a = -2.502907875095892822283902873218215786381271376727150-

Bifurcation Velocity   (first Feigenbaum constant) :

The "bifurcation velocity" (d) governs the geometric onset of  chaos  via period-doubling in iterative sequences (with respect to some parameter which is used linearly in each iteration, to damp a given function having a quadratic maximum).

This universal constant was unearthed in October 1975 by Mitchell J. Feigenbaum (b.1944).

Reduction Parameter   (second Feigenbaum constant) :

The related "reduction parameter" (a) is the second Feigenbaum constant...

 Come back later, we're
 still working on this one...

Feigenbaum Constant  by  Eric W. Weisstein  (MathWorld)   |   Mathematical Constants  by  Steven R. Finch.
 
4.669... The Feigenbaum constant (18:54)  by  Ben Sparks  (Numberphile, 2017-01-16).
This equation will change how you see the world (18:38)   by  Derek Muller  (Veritasium, 2020-01-29).

border
border
visits since April 1, 2018
 (c) Copyright 2000-2021, Gerard P. Michon, Ph.D.